Читать онлайн Кто придумал велосипед, или Самые популярные изобретения из прошлых веков, которые актуальны и сегодня бесплатно
Предисловие
Развитие общества зависит от уровня применяемых в производстве орудий производства.
Человечество живет в удивительное время. Достигнут наивысший прогресс во всех сферах жизни. Вместе с физиологией человека эволюционировал и его интеллект. Мы обязаны этими огромными достижениями небольшому количеству великих умов – учёным, изобретателям и ремесленникам, которые придумали и разработали продукты и механизмы, на которых и строится современный мир.
История изобретений включает в себя всё, что было создано человеком за тысячи лет существования.
XVIII и XIX века ознаменовались Великой индустриальной революцией. Совершился переход от ручного труда к машинному, от мануфактуры к фабрике. С одной стороны, она сама была рождена изобретениями и открытиями в науке и технике, с другой – она же дала толчок к развитию дальнейших знаний и наук. Промышленная революция связана не просто с началом массового применения машин, но и с изменением всей структуры общества. Так, с созданием паровых двигателей и ткацкого станка начался быстрый экономический рост, исторически быстро увеличился жизненный уровень населения. Промышленная революция позволила на протяжении жизни всего лишь 3–5 поколений перейти от аграрного общества (где большинство населения вело натуральное хозяйство) к индустриальному.
В сегодняшней жизни мы пользуемся многими предметами из того великого времени, давшего толчок к развитию не только промышленности, транспорта, но и к новому мышлению. Обладатели нового мышления дали человечеству и такие «мелочи», как зажигалка, бритвенный станок, кукла Барби.
Изобретатели умеют мыслить нестандартно и способны находить новаторские решения различных проблем. Они изменяют мир к лучшему.
Автомат АК-47
Автомат Калашникова (АК) и его модификации являются самым распространённым стрелковым оружием в мире. К этому типу (включая лицензионные и нелицензионные копии, а также сторонние разработки на базе АК) принадлежит до 1/5 всего имеющегося в мире стрелкового огнестрельного автоматического оружия. За 60 лет было выпущено более 70 миллионов автоматов Калашникова различных модификаций. Они состоят на вооружении 50 иностранных армий. Главный конкурент автоматов Калашникова – американская автоматическая винтовка М16 – была произведена в количестве примерно 8 миллионов штук.
На основе 7,62-мм автомата Калашникова создано семейство боевого и гражданского стрелкового оружия различных калибров, включая автоматы АКМ и АК-74 и их модификации, ручной пулемёт Калашникова, карабины и гладкоствольные ружья «Сайга» и другие, в том числе за рубежом.
Михаил Тимофеевич Калашников (1919–2013) – уроженец Алтайского края, родился в большой, многодетной семье. Уже после окончания школы юноша самостоятельно разобрал пистолет браунинг с целью ознакомления и детального изучения оружейного устройства. В 19 лет он был призван на армейскую службу, где им была получена специальность механика-водителя танка.
Одной из первых его разработок был инерционный регистратор, подсчитывающий количество выстрелов, произведенных из пушки танка. Затем несколько месяцев он был увлечен разработкой счетчика моторесурсов танкового двигателя. Результат превзошел все ожидания – изобретение работало четко, точно фиксируя работу двигателя. Во время Великой Отечественной войны являлся командиром танка, однако осенью 1941 года им было получено тяжелое ранение. Именно во время лечения начал делать первые наброски автоматического оружия. А через несколько месяцев он разработал свой первый образец огнестрельного оружия. Хотя образец пистолета-пулемета не был рекомендован для серийного производства по ряду технических причин, однако великим советским ученым в области механики А. А. Благонравовым была отмечена оригинальность идеи, а также сама конструкция образца.
За разработку автомата Калашников взялся в 1945 году. После нескольких лет конструирования, доработок, а также испытания боем автоматические системы Калашникова были достойно оценены и рекомендованы для армейского вооружения.
В 1943 году под поступивший для вооружения винтовочный патрон, калибр которого составил 7,62 мм, необходимо было стрелковое оружие. На конкурсной основе стартовали разработки оружия специально для патрона данного калибра. Основная задача была – превзойти аналоги, создать достойную замену винтовки Мосина. Среди конкурсных работ были другие удачные проекты известных разработчиков, однако автоматическая система Михаила Калашникова (известная также под названием АК-47) по результатам конкурса превзошла конкурентов по конструкции, а также стоимости производства. В 1948 году Михаил Калашников отправился на мотозавод города Ижевска для выпуска пробной партии автоматических систем с целью проверки их при помощи воинских испытаний. Уже через год на машиностроительном заводе города Ижевска стартовало серийное производство АК-47. К следующему году АК поступил на вооружение армии Советского Союза.
Самой первой версией, спроектированной Михаилом Тимофеевичем во время конкурса, был АК-46. Данная версия оружия была изобретена в 1946 году, но после подробного изучения и ряда боевых испытаний данную модель признали непригодной.
Однако, как рассказывает история создания автомата Калашникова, следующий, 1947 год явился годом разработки знаменитого АК-47. Совместно с АК к 1949 году приняли на вооружение Советской армии складную версию АК – АКС, созданную для войск особого назначения. Затем, с 1959 года, история автомата Калашникова переходит на новый этап. На замену АК-47 приходит автомат Калашникова модернизированный (АКМ). С этого же года именно АКМ стал самой распространенной версией Калашникова. Относительно предшествующих моделей у АКМ улучшены показатели дальности стрельбы, была изменена форма приклада, добавлен дульный тормоз-компенсатор, а также уменьшена масса, добавлен штык-нож. Вместе с данной моделью была выпущена модификация АКМН, обладающая ночным, оптическим прицелом. Совместно с АКМ вооружение пополнилось аналогичной моделью, но приклад которой является складным – АКМС. Помимо данной версии также существовал АКМСН, то есть ночной вариант со специальным оптическим прицелом. Последующие несколько лет активно шла разработка автоматической системы для применения с патроном калибра 5,45x39 мм. К 1974 году на вооружение поступила новая модификация – АК-74 и АК-74Н (модель, включающая ночной и оптический прицел). Специальной разработкой для войск особого назначения была новая версия АКС-74, то есть модель, обладающая складным прикладом, еще одна модель имела название АКС-74Н – ночная модификация с оптическим прицелом. К 1979 году специально для вооружения десантных войск появилась укороченная версия АКС-74 – АКС-74У и АКС-74УН, содержащая крепеж для ночного и оптического прицела.
В 1991 году для вооружения армии поступил модернизированный АК-74 под названием АК-74М. Выпущенный в массовое производство уникальный автомат сумел заменить одновременно несколько моделей. Именно версия АК-74М стала базовой версией для разработки всей сотой серии. Сотая серия АК представляет собой различные версии АК-74М, рассчитанные для экспорта. Для поставки другим странам сейчас используются только автоматические системы сотой серии, так как эта серия превосходит предыдущие по качеству материала, современности технологического процесса, улучшенным характеристикам стрельбы. Наиболее современной моделью пятого поколения является модель АК-12. Данный образец появился в 2012 году.
За свою надежность он завоевал заслуженное безоговорочное признание большинства стран мира. Вместе со всеми своими модификациями он занимает более 15 % стрелкового оружия во всем мире, именно поэтому он включен в Книгу рекордов Гиннесса в качестве самого распространенного оружия в мире.
Авторучка
Инструменты для письма известны с глубокой древности, примерно с 3000 года до новой эры. Они вырезались из стеблей тростника. Английское слово «pen» (ручка, птичье перо) произошло от латинского «penna» (перо птицы), поскольку большое распространение приобрели гусиные перья, которые затачивались у корня. С VI века до новой эры перья использовали на протяжении более тысячи лет многие цивилизации. Лучшие образцы изготавливались из перьев лебедей, индюков и гусей, как имеющих в крыльях перья наибольшего размера. Археологические находки в руинах Помпеи включают бронзовые варианты перьев, однако распространение они получили лишь к концу XVIII века.
Создать ручку с чернилами внутри себя. Сделать ее автономной. Этой идеей «зажигались» изобретатели с момента использования пера, как пишущего инструмента. История знает много попыток создания авторучки.
В 1636 году немецкий изобретатель Даниель Швентер создал ручку с резервуаром для чернил. Это было обычное гусиное перо, во внутрь которого помещался контейнер для чернил – еще одно перо. С обеих сторон резервуар локализировался пробкой. Но в нижней части проделывалось небольшое отверстие. Через него при нажатии на перо просачивалось чернило и подавалось на пишущую часть. Из-за своего несовершенства эта авторучка не получила широкого признания. Но концепция контейнера для чернил в последующем создании ручки стала основополагающей.
В 1809 году английский изобретатель Бартоломей Фолче создал перьевую ручку с контейнером для чернил. И даже запатентовал ее. Но она не получила широкого распространения. И виной всему была ее низкая надежность. Ручка то выпускала слишком много чернил, то, наоборот, вовсе отказывалась писать.
25 мая 1827 года французским правительством был выдан патент на перьевую авторучку. Получил его румынский студент Петраче Поенару (1799–1875), который тогда учился в Париже. Когда он впоследствии вернулся на родину, то стал одновременно математиком, физиком, инженером, изобретателем, преподавателем и организатором системы образования, а также политиком, агрономом и зоотехником.
Изобретенный Поенару прибор был более совершенным. Утечки чернил были исключены. Ею стало легче писать. Авторучка не царапала бумагу. Она состояла из заменяемых частей, что позволяло проводить ее быстрый поточный ремонт, а не делать покупку новой авторучки. Назвал свое изобретение Петраче Поенару «Нескончаемое портативное перо, с автоматической подачей чернил». Но по непонятным причинам и эта авторучка не стала широко популярной.
В 1883 году один малоизвестный страховой брокер Льюис Эдсон Уотерман из Америки вместе со своим братом решили сделать универсальную авторучку. В 1884 году запатентовал изобретение первой перьевой авторучки, хотя реально это было усовершенствование модели Поенару. Правда, Уотерман добился, чего хотел. Авторучка стала надежной. Перестала без причины выливать чернила и царапать сухим пером. В ней Уотерман применил революционную систему подачи чернил. Она подавала ровно столько воздуха, сколько было истрачено чернил. И это решило все проблемы.
Авторучки Уотерман отличались:
– высокой надежностью и качеством,
– легкостью письма. Ей можно писать много часов в подряд, и рука не устанет,
– автономностью подачи чернил и длительностью их использования,
– оригинальным внешним видом,
– разнообразием моделей.
Поэтому, компания Уотерман стала ведущим производителем перьевых авторучек в Америке. А впоследствии и во всем мире.
Азбука Морзе
Для того чтобы телеграф стал надежным устройством связи, необходимо было создать аппарат, который бы мог записывать передаваемую информацию.
Сэмуэль Морзе (1791–1872) был по профессии художник. В 1832 году во время долгого плавания из Европы в Америку он ознакомился с устройством электромагнита. Тогда же у него появилась идея использовать его для передачи сигналов. К концу путешествия он уже успел придумать аппарат со всеми необходимыми принадлежностями: электромагнитом, движущейся полоской бумаги, а также своей знаменитой азбукой, состоящей из системы точек и тире. Но потребовалось еще много лет упорного труда, прежде чем Морзе удалось создать работоспособную модель телеграфного аппарата.
Дело осложнялось тем, что в то время в Америке очень трудно было достать какие-либо электрические приборы. Буквально все Морзе приходилось делать самому или при помощи своих друзей из нью-йоркского университета (куда он был приглашен в 1835 году профессором литературы и изящных искусств).
Морзе достал в кузнице кусок мягкого железа и изогнул его в виде подковы. Изолированная медная проволока тогда еще не была известна. Морзе купил несколько метров проволоки и изолировал ее бумагой. Первое большое разочарование постигло его, когда обнаружилось недостаточное намагничивание электромагнита. Это объяснялось малым числом оборотов проволоки вокруг сердечника. Только ознакомившись с книгой профессора Генри, Морзе смог исправить допущенные ошибки и собрал первую действующую модель своего аппарата.
На деревянной раме, прикрепленной к столу, он установил электромагнит и часовой механизм, приводивший в движение бумажную ленту. К маятнику часов он прикрепил якорь (пружину) магнита и карандаш. Производимое при помощи особого приспособления – телеграфного ключа – замыкание и размыкание тока заставляло маятник качаться взад и вперед, причем карандаш чертил на движущейся ленте бумаги черточки, которые соответствовали поданным посредством тока условным знакам.
Это было крупным успехом, но тут явились новые затруднения. При передаче сигнала на большое расстояние из-за сопротивления проволоки сила сигнала ослабевала настолько, что он уже не мог управлять магнитом. Чтобы преодолеть это затруднение, Морзе изобрел особый электромагнитный замыкатель, так называемое реле. Реле представляло собой чрезвычайно чувствительный электромагнит, который отзывался даже на самые слабые токи, поступавшие из линии. При каждом притяжении якоря реле замыкало ток местной батареи, пропуская его через электромагнит пишущего прибора.
Таким образом, Морзе изобрел все основные части своего телеграфа. Он закончил работу в 1837 году. Еще шесть лет ушло у него на тщетные попытки заинтересовать правительство США своим изобретением. Только в 1843 году конгресс США принял решение ассигновать 30 тысяч долларов на строительство первой телеграфной линии длиной 64 км между Вашингтоном и Балтимором.
Сначала ее прокладывали под землей, но потом обнаружилось, что изоляция не выдерживает сырости. Пришлось срочно исправлять положение и тянуть проволоку над землей. 24 мая 1844 года была торжественно отправлена первая телеграмма. Через четыре года телеграфные линии имелись уже в большинстве штатов.
Телеграфный аппарат Морзе оказался чрезвычайно практичным и удобным в обращении. Вскоре он получил широчайшее распространение во всем мире и принес своему создателю заслуженную славу и богатство. Конструкция его очень проста. Главными частями аппарата были передающее устройство – ключ, и принимающее – пишущий прибор.
Неудобство аппарата Морзе заключалось в том, что передаваемые им сообщения были понятны лишь профессионалам, знакомым с азбукой Морзе. В дальнейшем многие изобретатели работали над созданием буквопечатающих аппаратов, записывающих не условные комбинации, а сами слова телеграммы.
Широкое распространение получил изобретенный в 1855 году буквопечатающий аппарат Юза. Главными его частями были: клавиатура с вращающимся замыкателем и доской с отверстием (это принадлежность передатчика); буквенное колесо с приспособлением для печатания (это приемник). На клавиатуре размещалось 28 клавиш, с помощью которых можно было передать 52 знака. Каждая клавиша системой рычагов соединялась с медным стержнем.
В обычном положении все эти стержни находились в гнездах, а все гнезда располагались на доске по окружности. Над этими гнездами вращался со скоростью 2 оборота в секунду замыкатель, так называемая тележка. Она приводилась во вращение опускающейся гирей весом 60 кг и системой зубчатых колес.
На станции приема с точно такой же скоростью вращалось буквенное колесо. На его ободе находились зубцы со знаками. Вращение тележки и колеса происходило синхронно, то есть в тот момент, когда тележка проходила над гнездом, соответствующим определенной букве или знаку, этот же самый знак оказывался в самой нижней части колеса над бумажной лентой. При нажатии клавиши один из медных стерженьков приподнимался и выступал из своего гнезда.
Когда тележка касалась его, цепь замыкалась. Электрический ток мгновенно достигал станции приема и, проходя через обмотки электромагнита, заставлял бумажную ленту (которая двигалась с постоянной скоростью) приподняться и коснуться нижнего зубца печатного колеса. Таким образом на ленте отпечатывалась нужная буква. Несмотря на кажущуюся сложность, телеграф Юза работал довольно быстро и опытный телеграфист передавал на нем до 40 слов в минуту.
Верховный Суд в 1854 году признал авторские права Морзе на телеграф.
Газеты, железные дороги и банки быстро нашли применение его телеграфу. Телеграфные линии моментально оплели весь мир, состояние и слава Морзе умножились. В 1858 году от десяти европейских государств Морзе получил за своё изобретение 400 000 франков. В старости Морзе опекал школы, университеты, церкви, библейские общества, миссионеров и бедных художников.
Акваланг
Слово акваланг состоит из двух частей: латинской составляющей – aqua, вода и английской – lung, лёгкое. Aqualung – «Водяное лёгкое».
Капитан Жак-Ив Кусто и эксперт по газовому оборудованию двигателей внутреннего сгорания Эмиль Ганьян, работая в сложных условиях оккупированной немцами Франции, в январе 1943 года, изобрели первый безопасный и эффективный аппарат для дыхания под водой, названный аквалангом, который по сей день успешно используется дайверами – любителями для погружения на воздухе до глубины 40 метров.
На самом деле был изобретён не акваланг, а его основная часть – регулятор – устройство, позволяющее естественным образом дышать на глубине из баллона со сжатым воздухом. Акваланг, как автономный аппарат, был изобретён ранее и применялся водолазами военно-морских сил Франции с 1865 года. Правда, максимальное давление воздуха в баллоне составляло порядка 30–40 атмосфер, и нахождение под водой было существенно ограничено как по глубине, так и по времени нахождения. Регулятор Ж. И. Кусто позволял использовать воздух в баллонах под давлением 150 атмосфер ещё тогда, а сегодня до 200–300 и выше, что сделало возможным создать его большой запас, столь необходимый для довольно длительного нахождения под водой.
Итак, Жак-Ив Кусто, взяв за основу изобретение Эмиля Ганьяна, клапанное устройство автоматической подачи горючего газа в автомобильный мотор, разработал регулятор подачи воздуха из баллона в лёгкие подводника под тем давлением, под которым он находится в соответствии с глубиной. Причем подача воздуха в лёгкие подводника начинается тогда, когда им делается попытка вдоха, и прекращается тогда, когда вдох заканчивается. Таким образом, процесс дыхания подводного пловца продолжает оставаться естественным, а расход воздуха небольшим.
Алмаз искусственный
Множество заявлений о синтезе алмазов было задокументировано между 1879 и 1928 годами; большинство этих заявлений было тщательно проанализировано, но ни одно из них так и не подтвердилось. В 1939 году советский учёный Овсей Лейпунский вычислил необходимые для успешного исхода опытов величины давления: минимум 60 000 атмосфер. В 1972 году ему был выдан диплом на открытие закономерности образования алмазов с приоритетом, датированным августом 1939 года.
В 1940 годах в США, Швеции и СССР начались систематические исследования по выращиванию алмазов с помощью методов CVD и HPHT. Эти два метода и по сей день доминируют в производстве синтетических алмазов.
Впервые воспроизводимый синтез был выполнен в 1953 году: шведский учёный Балтазар Платен сконструировал установку, в которой кубический образец сжимался шестью поршнями с разных сторон. 15 сентября 1953 года на ней были получены первые в мире искусственные алмазы.
Новый метод, известный как синтез с подрывом, стал использоваться в конце 1990 годов. В основе данного метода лежит образование нанометровых песчинок алмаза при подрыве взрывчатки, содержащей углерод. Ещё один метод базируется на обработке графита высокомощным ультразвуком – он был продемонстрирован в лабораторных условиях, но пока не снискал коммерческого успеха.
Трейси Холл (1919–2008) – американский химик, впервые в мире совершивший документально засвидетельствованный синтез алмаза, используя оборудование собственной разработки. Этот успех привел к созданию крупной индустрии по производству суперматериалов.
Успех Холла, по его словам, стал возможен благодаря решимости идти собственным путём, начиная с радикального изменения конструкции используемого пресса. В аппарате использовался карболой (carboloy – сверхтвердый сплав на основе карбида вольфрама, диспергированного в кобальте, так же известный как widia), кольцевой бандаж из высокопрочной стали, поддерживающий центральную часть, где происходил синтез алмазов и два входящих в него конических поршня, приводимых в движение большим гидравлическим прессом.
Состав исходного материала, катализатор, требуемая температура и давление выбирались интуитивно. Холл использовал графит и троилит (FeS). Алмазы прилипали к танталовому диску, который использовался для подведения электрического тока при нагреве образца.
Этот эксперимент был выполнен при давлении в 70000 атмосфер и температуре 1600°C и длился около 38 минут. При вскрытии образца на танталовых дисках были обнаружены скопления кристаллов алмаза. 31 декабря 1954 года синтез алмаза был подтвержден, и 15 февраля 1955 года об этом было сообщено прессе.
Компания General Electric, где работал ученый, буквально обогатилась благодаря изобретению Холла. Сам Трейси Холл, в дополнение к его обычной зарплате, был награждён десятидолларовой облигацией Казначейства США.
«Экие деньжищи!» – иронизировал впоследствии ученый.
Американские горки
Американские горки (в некоторых странах Европы – Русские горки) – русское название одного из самых популярных аттракционов в парках развлечений.
Представляют собой железнодорожную систему специальной конструкции, спроектированной так, чтобы состав вагонеток с пассажирами, проходящий по ней, резко изменял направление и скорость движения. Так как вагонетки не имеют собственного источника энергии, то для ускорения используется преобразование потенциальной энергии состава в кинетическую и наоборот. Термин «американские горки» используется в России потому, что в виде, близком к современному, они были впервые сконструированы в США и получили там очень широкое распространение. Американские горки были разработаны и запатентованы изобретателем Джоном Тейлором под названием «Наклонная железная дорога» и впервые открыты в Кони-Айленде в 1884 году. Однако более известно имя ЛаМаркуса Эдна Томпсона, который запатентовал более 30 инноваций, относящихся к американским горкам, и построил несколько десятков горок в Соединённых Штатах.
Английская булавка
Уолтер Хант (1796–1859) – американский механик и изобретатель, имея долг в $15, не знал, как его вернуть. Размышляя на эту тему, он в задумчивости машинально крутил в руках кусок металлической проволоки, случайно оказавшимся у него в руках. Кусок проволоки превратился в петлю-спираль с двумя окончаниями, одно из которых напоминало иглу. На второй конец просился замок, за который цеплялась бы игла. Через короткое время Хант придумал его. А затем, 10 апреля 1849 года, запатентовал изобретение, названое им «штырьком для платья» и спешно проданное.
Уже осенью того же года предприимчивый британец Чарльз Роули, владелец фирмы по производству оконной фурнитуры Charles Rowley & Co Ltd, существующий, кстати, и по сей день, запатентовал аналог булавки Ханта у себя на родине, раструбив об этом на весь мир. С тех пор булавка и называется английской, хотя по справедливости ее следовало бы назвать американской.
Анестезия
Кроуфорд Уильямсон Лонг (1815–1878) – американский врач и фармацевт первым применил ингаляционный диэтиловый эфир в качестве анестезирующего средства. Хотя его работа была неизвестна за пределами узкого круга коллег в течение нескольких лет, он в настоящее время признан в качестве первого врача, который применил эфирный наркоз для хирургического вмешательства.
Свое изобретение Лонг придумал благодаря своей наблюдательности. Молодые люди из его компании устраивали веселые вечеринки. Под влиянием эфира на таких вечеринках часто возникали потасовки, во время которых их участники непременно должны были испытывать боль, однако потом никто из них не помнил о каких-либо неприятных ощущениях. Одному из пациентов Лонга уже несколько раз назначали операцию по удалению двух кист на шее, но каждый раз операцию приходилось отменять, потому что пациент панически боялся боли. И тогда Лонг вспомнил о безболезненных ударах, полученных на «эфирных вечеринках». Он пригласил пациента на очередную вечеринку, убедился, что эфир не оказывает на него нежелательного воздействия, а затем уговорил пациента лечь на операционный стол. 30 марта 1842 года Лонг смочил эфиром полотенце, дал пациенту подышать через него, а когда тот потерял сознание, удалил одну из кист. Больной ничего не почувствовал. Придя в себя, он просто не мог поверить в случившееся. Чтобы доказать, что операция состоялась, Лонгу пришлось продемонстрировать удаленную кисту. После этого Лонг стал давать эфир во время операции и другим своим пациентам. В каждом случае операции выполнялись в присутствии многочисленных свидетелей, подтверждавших происходившее – этот факт имел большое значение для того, что происходило в дальнейшем. В декабре 1845 года Лонг впервые применил обезболивание в акушерстве. Таким образом в 26 лет он стал первым врачом в истории медицины, применившим анестезию при хирургических вмешательствах, а в 29 лет – первым, использовавшим её в акушерской практике.
Под термином «наркоз» понимается именно общее обезболивание организма. Когда говорят о локальном (местном) обезболивании, употребляется термин «местная анестезия» или местное обезболивание.
Первыми в мире эфирный наркоз в хирургии для проведения операций успешно применили независимо друг от друга русские учёные Фёдор Иноземцев (7 февраля 1847 года) и Николай Пирогов (14 февраля того же года). В том же году оба русских хирурга, относившиеся друг к другу как к соперникам и конкурентам, выполнили по нескольку десятков успешных операций с применением такого наркоза.
Несколько ранее (в 1846 году) дантист Г. Уэлс из США стал первым в мире человеком, который подвергся хирургической манипуляции, находясь под воздействием обезболивающего средства – закиси азота или «веселящего газа». Уэлсу удалили зуб, но боли он не почувствовал. Уэлс вдохновился удачным опытом и стал пропагандировать новый метод. Однако повторная публичная демонстрация действия химического анестетика завершилась крахом. Уэлсу не удалось завоевать лавры первооткрывателя наркоза.
Исследованием болеутоляющего действия серного эфира заинтересовался У. Мортон, практиковавший в области стоматологии. Он осуществил серию удачных опытов на себе и 16 октября 1846 года погрузил в состояние наркоза первого пациента. Была проведена операция по безболезненному удалению опухоли на шее. Событие получило широкий резонанс. Мортон запатентовал своё нововведение. Он официально считается изобретателем наркоза и первым в истории медицины анестезиологом.
Первым российским врачом, рискнувшим испытать передовой метод на своих пациентах, был Федор Иванович Иноземцев. В 1847 году он произвёл несколько сложных полостных операций над пациентами, погруженными в медикаментозный сон. Поэтому он является первооткрывателем наркоза в России.
В начале 1830 годов был открыт хлороформ. Новый вид наркоза с помощью хлороформа был официально презентован медицинской общественности 10 ноября 1847 года. Его изобретатель шотландский акушер Д. Симпсон активно внедрял обезболивание рожениц, чтобы облегчить процесс родов. Существует предание, что первой девочке, появившейся на свет безболезненно, дали имя Анастезия. Симпсон по праву считается основателем акушерской анестезиологии. Хлороформный наркоз был намного удобнее и выгоднее, чем эфирный. Он быстрее погружал человека в сон, оказывал более глубокое воздействие. Для него не нужна была дополнительная аппаратура, достаточно вдохнуть пары со смоченной в хлороформе марли.
Аппарат Илизарова
Это медицинский аппарат для лечения травм.
Гавриил Илизаров родился в Беловеже Белостокского воеводства Польши, где жила семья его матери и где после службы в Красной Армии во время Гражданской войны осел его отец. В 1939 году он стал студентом Симферопольского медицинского института, который окончил в 1944 году. Получив диплом врача, начал работу в районной больнице в селе Долговка и, пройдя много ступеней и лет, в 1987 году стал директором Всесоюзного Курганского научного центра восстановительной травматологии и ортопедии.
Когда он заведовал хирургическим отделением Кур ганского областного госпиталя для инвалидов войны, то видел сотни солдат с последствиями повреждений костей, которым проводимое лечение практически не давало результата. И тогда Г. А. Илизаров предложил свой, принципиально новый способ сращивания костей при переломах. Причем на свой аппарат он получил авторское свидетельство. Использование аппарата Илизарова повысило эффективность и заметно сократило сроки лечения переломов.
Аппарат он изобрел в 1950 году. Это металлические кольца, на которых крепятся спицы, проходящие через костную ткань. Кольца соединены механическими стержнями, позволяющими менять их ориентацию со скоростью порядка одного миллиметра в день. Рассчитывая на широкое применение своего аппарата, Г. А. Илизаров унифицировал его узлы и детали. Для каждого случая врачи монтируют из весьма ограниченного числа деталей особую разновидность аппарата. Он применяется для лечения травм, переломов, врожденных деформаций костной ткани, при эстетических операциях в ортопедической косметологии по удлинению и выпрямлению ног.
Но понадобилось полтора десятка лет, чтобы этот метод получил всеобщее признание. За выдающиеся достижения Илизарову была присвоена степень доктора медицинских наук без получения звания кандидата. Защита диссертации состоялась в Перми в сентябре 1968 года. В диссертации был обобщен накопленный за многие годы опыт успешного лечения тысяч больных.
С 1982 года началось внедрение метода Илизарова в практику ведущих зарубежных стран. Итальянская фирма «Медикл Пластик» купила лицензию на право изготовления и продажи аппарата Илизарова в странах Западной Европы, а также в Бразилии и Аргентине. Итальянская АSАМI (Ассоциация по изучению аппарата и метода Илизарова) приняла решение о проведении постоянных международных курсов по обучению данному методу. Директором курсов был единодушно утвержден Г. А. Илизаров.
Атомная бомба
«Проект Манхэттен» – кодовое название программы США по разработке ядерного оружия, осуществление которой началось 17 сентября 1943 года.
Перед этим исследования велись в «Урановом комитете» с 1939 года. В проекте принимали участие учёные из Соединённых Штатов Америки, Великобритании, Германии и Канады. Руководили проектом американский физик Роберт Оппенгеймер и генерал Лесли Гровс.
Для того чтобы скрыть назначение вновь созданной структуры, в составе военно-инженерных войск армии США был сформирован Манхэттенский инженерный округ, а Гровс (до той поры полковник) был произведён в бригадные генералы и назначен командующим этим округом, по имени которого и весь проект получил своё название.
Первое испытание ядерного взрывного устройства «Тринити» на основе плутония-239 (в ходе испытания тестировалась именно плутониевая бомба имплозивного типа) было проведено в штате Нью-Мексико 16 июля 1945 года (полигон Аламогордо). После этого взрыва Гровс очень показательно ответил на слова Оппенгеймера: «Война кончена», – он сказал: «Да, но после того, как мы сбросим ещё две бомбы на Японию».
В рамках проекта были созданы три атомные бомбы: плутониевая «Штучка» (взорвана при первом ядерном испытании), урановый «Малыш» (сброшена на Хиросиму 6 августа 1945 года) и плутониевый «Толстяк» (сброшена на Нагасаки 9 августа 1945 года).
Бомба «Малыш» была ядерным боезарядом пушечного типа. Сомнений в работе пушечной схемы не было, поэтому её испытания на полигоне не проводились. Бомба «Малыш» была сброшена на Хиросиму 6 августа 1945 года.
Безоболочечное ядерное взрывное устройство «Штучка» на основе плутония-239 и имплозивной схемы «Вариант III» было взорвано во время испытания «Тринити» на полигоне Аламогордо в штате Нью-Мексико 16 июля 1945 года. Испытание показало, что выбранный «Вариант III» имплозивной схемы сработал и достаточно надёжен. Вариант этого устройства, оформленный в корпус авиабомбы «Толстяк», был сброшен на Нагасаки 9 августа 1945 года.
Манхэттенский проект создавался с единственной военной целью: создать атомную бомбу к лету 1945 года. Все усилия военных, учёных и инженеров были направлены на создание работающего атомного оружия. Все расчёты, опыты и исследования в области атомного ядра, ядерной энергии велись только в том направлении, которое вело к конечной цели. Все другие побочные научные изыскания, исследования и варианты отбрасывались из-за жёстких сроков и ограниченности человеческих и материальных ресурсов.
Так как Манхэттенский проект выполнил свою единственную задачу, в сентябре 1945 года после окончания Второй мировой войны Лос-Аламос стали покидать учёные, возвращаясь к своим прежним научным работам. Сменивший Роберта Оппенгеймера на посту научного директора Лос-Аламосской лаборатории Норрис Брэдбери ещё в течение года с трудом поддерживал работу лаборатории, занимая оставшихся ученых теоретическими задачами в области термоядерного синтеза и улучшениями имевшихся атомных бомб до тех пор, пока в высших политических кругах не было принято решение, что делать с атомным оружием, кто будет осуществлять контроль за его хранением и разработкой, и как будет это всё финансироваться.
Атомные часы
Национальный институт стандартов и технологий США (NIST) – подразделение Управления по технологиям США, одного из агентств Министерства торговли США. Штаб-квартира организации располагается в Гейтерсберге.
В задачу института входит «продвигать» инновационную и индустриальную конкурентоспособность США путём развития наук об измерениях, стандартизации и технологий с целью повышения экономической безопасности и улучшения качества жизни. Вместе с Американским национальным институтом стандартов (ANSI) участвует в разработке стандартов и спецификаций к программным решениям используемым как в государственном секторе США, так и имеющим коммерческое применение.
Четыре научных работника NIST получили Нобелевские премии по физике: Уильям Д. Филлипс (1997), Эрик А. Корнелл (2001), Джон Л. Холл (2005) и Дэвид Дж. Уайнленд (2012). Это наибольшее количество нобелевских лауреатов в отдельной правительственной лаборатории США. Все четыре лауреата были награждены за работы, связанные с лазерным охлаждением атомов, что имеет непосредственное отношение к разработке и развитию технологии атомных часов.
Атомные часы (молекулярные, квантовые часы) – прибор для измерения времени, в котором в качестве периодического процесса используются собственные колебания, связанные с процессами, происходящими на уровне атомов или молекул.
Атомные часы важны в навигации. Определение положения космических кораблей, спутников, баллистических ракет, самолётов, подводных лодок, а также передвижение автомобилей в автоматическом режиме по спутниковой связи (GPS, ГЛОНАСС, Galileo) невозможны без атомных часов. Атомные часы используются также в системах спутниковой и наземной телекоммуникации, в том числе в базовых станциях мобильной связи, международными и национальными бюро стандартов и службами точного времени, которые периодически транслируют временные сигналы по радио.
С 1967 года международная система единиц СИ определяет одну секунду как 9 192 631 770 периодов электромагнитного излучения, возникающего при переходе между двумя сверхтонкими уровнями основного состояния атома цезия-133. Согласно этому определению, атом цезия-133 является стандартом для измерений времени и частоты. Точность определения секунды определяет точность определения других основных единиц, таких как, например, вольт или метр, содержащих секунду в своём определении.
Специалисты Национального института стандартов и технологий США установили мировой рекорд, доведя точность атомных часов на основе стронция до отклонения на одну секунду за 15 миллиардов лет (что приблизительно соответствует возрасту Вселенной). Точность предыдущих часов, созданных ими же в 2014 году, была в три раза меньше – отклонение составляло одну секунду на 5 миллиардов лет.
В этих измерительных приборах аналогом «тиканья» механических часов выступают перемещения атомов стронция в пространственной решетке, созданной с помощью лазера. За одну секунду атомы совершают 430 миллиардов таких переходов.
Несмотря на то что такие часы имеют гораздо большую точность, в стабильности их работы еще необходимо удостовериться на практике. Поэтому в мире на данный момент более распространены часы на основе цезия, а не стронция. Они работают с погрешностью в одну секунду на несколько десятков миллионов лет. C 1967 года в Международной системе единиц измерения принято, что секунда – это 9 192 631 770 переходов, которые совершает атом цезия-133.
Как отмечается в заявлении американских физиков, многие уже ставшие привычными технологии, такие как мобильные телефоны, приемники сигнала спутниковой системы глобального позиционирования (GPS) и даже система электроснабжения, полагаются именно на атомные часы. По словам ученых, даже небольшое улучшение в работе этого прибора ведет к появлению новых технологий.
Банка Мейсона
Это банка с завинчивающейся крышкой для консервирования.
Название «банка Мейсона» относится к литым консервным банкам из стекла, горлышки которых имеют внешнюю резьбу. На эту резьбу надевается металлический обруч, смысл которого – прижим железной крышки к банке. С внутренней стороны крышки находится резиновая прокладка, за счет которой закрытие получается герметичным. Как правило, кольца и крышки можно купить вместе с банками Мейсона. Кольца допустимо использовать неоднократно, крышки же делаются одноразовыми. Приобрести их не проблема.
В массовое производство чаще запускаются контейнеры для консервов из пластика и жестяные банки, банки Мейсона шире распространены в изготовлении домашней консервации. Придумал эти сосуды Джон Лэндис Мейсон (1832–1902), известный жестянщик в Филадельфии XIX века.
История баночек Mason началась в 1858 году, когда предприимчивый нью-йоркский кузнец Джон Л. Мейсон изобрел машину, которая смогла нарезать металлические заготовки для крышечек. Эти специальным образом прорезиненные крышечки позволили совершить миниреволюцию в процессе консервирования. Баночки Mason герметично закрываются благодаря металлическому обручу и прорезиненной крышке, делая процесс консервации максимально простым, достаточно лишь вручную завернуть крышечку.
Крышки и обручи продаются как в комплекте с самими баночками, так и отдельно от них, так как саму крышку для консервации можно использовать только 1 раз, после чего ее следует сменить. Металлические части не контактируют с находящимися внутри продуктами, а значит, возможная ржавчина не попадает в пищу. Если вы используете баночку в других целях, пользоваться одной крышкой можно долго.
Банкомат
Потребность в банкомате появилась уже в начале XX века. Нужна была машина, которая сможет выполнять кассовые операции без участия человека. Многие хотели сконструировать такой аппарат. Сделал это Лютер Джордж Симьян в 1939 году. Именно он положил начало истории банкоматов. Симьян первым создал машину, которая могла принимать наличные и через которую можно было оплатить квитанции. Назвал он ее банкограф.
Внутри Симьян вмонтировал маленький фотоаппарат для фотографирования денег. На каждом снимке ставились время и дата. Каждому клиенту выдавалась квитанция о получении средств. Изобретатель уговорил руководство одного из банков провести испытание первого в истории банкомата. Банкомат был просто «волшебным ящиком», который не мог: ни принять платеж, не имел связи с банком, не мог занести деньги на счет, а просто выдавал деньги всем, кто хорошо попросит. Этот банкомат почти полгода простоял в одном из отделений банка.
Прорыв в истории банкоматов произошел, когда изобретатель Дональд Ветцел придумал всем известные пластиковые карты с магнитной полосой, в которой находилась вся необходимая информация о владельце и его операциях. Стоили они дорого, и распространяли их только очень крупные банки. В 1973 году банкомат был официально запатентован. За свое изобретение в 2005 году Дональд Ветцел получил орден Британской империи от самой королевы.
Барометр
Барометр (от греческих слов «тяжесть» и «измеряю») – это прибор для измерения атмосферного давления, а поскольку погода на улице связана с атмосферным давлением, то можно смело говорить о барометре, как о предсказателе погоды. Изобретен барометр был еще в 1644 году итальянцем, учеником Галилея, Эванджелистом Торричелли. И вот уже несколько веков барометр с успехом используется в различных отраслях науки и техники, а также в быту.
Принцип работы барометра заключается в измерении давления земной атмосферы. Толща атмосферы, а это десятки километров, давит на все тела, и это давление как раз и измеряет барометр. А по изменению барометрического давления можно судить о предстоящем изменении погоды. Как правило, эти изменения происходят несколько раньше, чем меняется погода, поэтому можно заранее предсказать, будет ли завтра моросить дождик (преобладание областей низкого давления – циклоны) или светить яркое солнце (области высокого давления – антициклоны).
Барометры бывают жидкостные и анероиды (то есть безжидкостные). И принцип их работы в целом одинаков. Только в первом случае барометрическое давление фиксируется по изменению в сосуде уровня жидкости, на которую давит атмосфера, а во втором – по деформации герметичного металлического гофрированного контейнера, в котором создано разряжение. При повышении атмосферного давления контейнер немного сжимается, а при понижении – распрямляется. Изменение геометрии контейнера через рычажную систему передается на стрелку.
В быту в основном используют барометр анероид, т. к. он более компактен. Но более точными считаются жидкостные, а именно, ртутные барометры. Недаром измерение атмосферного давления проводится в эквиваленте высоты столбика ртути в ртутном барометре. Вы, наверное, не раз слышали в прогнозе погоды, что атмосферное давление составляет столько-то миллиметров ртутного столба. Даже если измерения проводились с помощью барометра-анероида, то его показания все равно указываются в эквиваленте столбика ртутного барометра. Несмотря на введение международной метрической системы, гектопаскали так и не смогли прижиться для определения атмосферного давления, как, впрочем, и бары, и старые добрые миллиметры ртутного столба используются сегодня.
С помощью показаний барометра можно не только предсказывать погоду, но и определять высоту над поверхностью земли. Поскольку с ростом высоты уменьшается давление атмосферы, то, зная величину падения барометрического давления на разных высотах, с помощью барометра можно определять высоту над поверхностью земли.
Бритва Жиллетт
До изобретения станка мужчины брились клинковыми бритвами. Первый станок появился на рынке в 1874 году в Великобритании. Кинг Кэмп Жиллетт (1855–1932) разработал станок для бритья, в который зажималось лезвие для бритья. В возрасте 40 лет во время бритья у него появилась идея, как можно облегчить нудный процесс точения лезвия бритвы. Он придумал бритвенный станок, в который зажимается лезвие, которое можно выбрасывать после того, как оно стало тупым. «Я стоял, сжав бритву в руке, – писал позже Кинг Кэмп, – и вдруг совершенно явственно представил себе будущий станок Жиллетт! За считанные секунды в голове промелькнуло множество вопросов, но ответы находились моментально, как будто все это происходило во сне».
Жиллетт впервые обратил внимание, что работает в бритве лишь тонкое лезвие, а оставшаяся часть служит для его поддержки – хотя производство ручки тоже требует времени и денег. В то время ручку делали из дорогой стали и украшали резьбой, чеканкой и прочими излишествами. Почему бы не придумать более экономный способ удержания лезвия, а самому ему увеличить срок действия.
Так родилась идея сменного, заточенного с двух сторон лезвия, а также Т-образной дешевой ручки с зажимами. До этого конструкция бритвы не менялась веками, а ее использование было процедурой рискованной и малоприятной – не случайно долгое время бритва называлась «опасной». Лишь в середине 1870-х годов братья Кемпфе в Германии изобрели «безопасную», но кованую и с лезвием, требовавшим постоянной заточки.
Жиллетт задумался о принципиально ином станке с другим лезвием – тонким, прочным, легким и дешевым, чтобы его можно было выкидывать и заменять после каждого бритья. Потенциальными покупателями такого товара должны были стать все взрослые мужчины на свете – вне зависимости от их национальной принадлежности, благосостояния и образования. Это и было гениальное изобретение, патент на которое мог обогатить изобретателя в одночасье.
Нужна была особая сталь для лезвия: одновременно тонкая, прочная и дешевая. Изобретатель еще не знал тогда, что эта сталь по стоимости окажется намного дороже расчетной. Не знал он и того, что одни лабораторные тесты потребуют четверти миллиона долларов.
Шесть лет прошли в бесплодных поисках, пока в 1901 году судьба не свела Жиллетта с инженером-механиком Уильямом Никерсоном, который и придумал технологию укрепления и заточки стальной ленты. После этого дело сдвинулось с мертвой точки – был получен патент на Т-образную безопасную бритву (которую можно открыть, чтобы сменить затупившееся лезвие на новое) и основана фирма по ее производству. Однако начальный капитал быстро иссяк, и компаньоны – Жиллетт и Никерсон с двумя своими друзьями – разместили акции компании на бирже, выручив еще $5 тысяч. Но и те вскоре улетучились, а себестоимость бритв оставалась еще слишком высокой для предмета одноразового использования. Жиллетту удалось привлечь инвесторов, и в 1903 году началось серийное производство его бритв.
В первый год было продано всего 168 станков и 51 лезвие, а в следующем году число достигло уже 90 000 станков и 123 000 лезвий.
С тех пор лезвия для бритья не нужно было точить, а можно было просто заменять старые лезвия на новые.
Главным достижением Жиллетта-бизнесмена был нестандартный маркетинговый ход, с тех пор ставший классическим: производитель бритвенных станков начал продавать их ниже себестоимости, даже раздавать даром! Так он приучил потребителей к своей продукции и заставил их покупать все больше лезвий.
Это и было главное изобретение Кинга Кэмпа Жиллетта. Модель бизнеса, которая получила название «бритва-лезвие», а сегодня называется моделью «наживки и крючка», когда главный продукт продается по заведомо заниженной цене, а прибыль получается за счет многократной продажи расходного продукта, без которого не работает главный. Фактически речь идет об особой форме продажи в рассрочку: потребитель в итоге компенсирует издержки компании на производство главного продукта, покупая расходные материалы. Как любил повторять сам Жиллетт, «не нужно жалеть денег на покупку рынка».
За два года Жиллетт стал миллионером. Уже к 1906 году он развернул дистрибьюторскую сеть в Европе и продлил свой патент еще на 20 лет, что позволило его компании надолго остаться монополистом.
В 1910 году Жиллетт предложил бывшему президенту страны Теодору Рузвельту миллион долларов, чтобы тот стал президентом его корпорации в штате Аризона. На это Рузвельт заявил: «Я бы с радостью, но, честно говоря, я не очень доверяю человеку, который делает бритвы и носит усы».
В 1917 году правительство США заказало у него 36 миллионов лезвий для солдат, воюющих в Первую мировую войну. К концу войны компания продала военным 3,5 млн станков и 32 млн лезвий. Бритва Жиллетт сделалась непреходящим атрибутом мужественности, гарантируя компании целые поколения будущих клиентов. Жиллетт смог изменить мир – он превратил бритье из ежедневной пытки в легкую необременительную процедуру.
Жиллетт потерял практические все свое состояние в результате биржевого краха 1929 года.
Классический бритвенный станок со сменным обоюдоострым лезвием, изобретённый Жилеттом, выпускается до сих пор и пользуется достаточной популярностью из-за низкой стоимости лезвия в результате его стандартизации, относительной простоты и длительного срока службы, связанной с лёгкостью полной очистки от остатков волос и влаги.
Изобретение Жиллетта дало человечеству новый вектор развития – за одноразовыми бритвами неизбежно последовали одноразовые ручки, одноразовая посуда, одноразовая одежда.
Бумажное производство
Ручной способ изготовления бумаги был изобретен в Китае около 2000 лет назад, и долгое время его автором считали Цай Луня (50—121 годы новой эры). Но более поздние исследования показали, что он только обобщил и описал уже существующую технологию, в которой в качестве сырья для производства бумаги использовали лубяные волокна молодых тутовых деревьев, некоторые однолетние растения.
Однако уже в середине XIX века начинает ощущаться недостаток волокнистых материалов, пригодных для изготовления бумаги (в основном используемого льняного и хлопкового тряпья). Немецкий ткач Келлер в 1843 году изобрел способ получения волокнистой массы из древесины путем истирания ее на вращающемся камне, а в 1852 году Генрих Фельтер, купивший патент у Келлера, построил дефибрер – устройство для истирания древесины. Однако волокно, получаемое таким способом, можно было использовать в производстве бумаги только в композиции с другими, более прочными волокнистыми материалами, например, тряпичной полумассой, запасы которой уже начали иссякать.
Чарльз Фенерти (1821–1892) начал экспериментировать с древесной массой приблизительно в 1838 году. И в 1844 году он сделал свое открытие. Это изобретение действительно положило начало новой промышленности, хотя сегодня большинство людей приписывает Ф. Г. Келлеру это оригинальное изобретение.
Вазелин
Название «вазелин» было запатентовано в США как торговая марка и торговый знак 14 мая 1878 года. Разработал и запатентовал его эмигрировавший в Америку английский химик Роберт Чезбро.
Когда в 1859 году начался нефтяной бум, Чезбро, общаясь с нефтяниками, заинтересовался парафинообразной массой, которая при нефтедобыче налипала к бурильным установкам и забивала насосы. Он заметил, что рабочие постоянно используют эту массу при ожогах и порезах в качестве успешно заживляющего раны средства. Он стал экспериментировать и сумел выделить из масы полезные ингредиенты. Получившимся веществом он смазал многочисленные ожоги и шрамы, полученные во время опытов, и раны довольно быстро затянулись. Это вещество Чезбро назвал «нефтяным желе» и запустил в производство в 1870 году. Сначала желе он выставил на продажу в аптеке, но мазь не покупали, поскольку все «нефтяное» ассоциировалось с опасностью пожара.
Тогда ученый придумал другое название – вазелин, от немецкого «wasser» – вода и греческого «elaion» – оливковое масло. Под этим названием оно и запатентовано.
Вазелин быстро стал незаменимым лечебным средством при воспалениях, ссадинах и ожогах. Вскоре он получил более широкое применение. Актрисы рисовали себе вазелиновые слезы. Художники наносили вазелин на пол, чтобы не испачкать краской, рыбаки – на крючки для привлечения рыбы, бейсболисты – на перчатки для смягчения кожи, пловцы – на тело…
Сейчас торговая марка «Vaseline» принадлежит компании «Unilever», которая выпускает под этим брендом целый ряд других средств по уходу за кожей.
Вазелин и сейчас добывают из нефти. Это светло-желтое или бесцветное жироподобное вещество – смесь минерального масла и тяжелых углеводородов, которое получают расплавлением углеводородов в масле с последующей очисткой смеси серной кислотой и отбеливающей глиной.
Сегодня различные сорта вазелина применяются в медицине, косметологии, ветеринарии, промышленности, а также в качестве технических смазок (для подшипников и защиты металлов от коррозии).
Вакуумный насос
Началом научного этапа в развитии вакуумной техники можно считать 1643 год, когда Торричелли впервые измерил атмосферное давление.
Отто фон Герике (1602–1686) – немецкий физик, инженер и философ – в 1650 году изобрёл вакуумную откачку и применил своё изобретение для изучения свойств вакуума и роли воздуха в процессе горения и для дыхания человека. В 1654 году провёл известный эксперимент с Магдебургскими полушариями, который доказал наличие давления воздуха; установил упругость и весомость воздуха, способность поддерживать горение, проводить звук.
В 1657 году изобрел водяной барометр, с помощью которого в 1660 году предсказал надвигающуюся бурю за 2 часа до её появления, таким образом войдя в историю как один из первых метеорологов.
В 1663 году изобрёл один из первых электростатических генераторов, производящих электричество трением – шар из серы, натираемый руками. В 1672 году обнаружил, что заряженный шар потрескивает и светится в темноте (первым наблюдал электролюминесценцию). Кроме того, им было обнаружено свойство электрического отталкивания однополярно заряженных предметов.