Читать онлайн Взрыв мироздания бесплатно

Взрыв мироздания

© Фейгин О. О., текст, 2016

© ООО «Страта», 2016

* * *

Грандиозна картина эволюции окружающего мира, расширения Вселенной от сверхплотного сверхгорячего состояния, с бурными реакциями между элементарными частицами, до современного, когда вещество распалось на гигантские системы небесных тел, возникли планеты и жизнь.

И. Д. Новиков. Эволюция Вселенной

Какой же ход логических рассуждений заставил эти видимые нами тесные пределы раздвигаться все больше и больше, теряясь в неизмеримой дали, так, что теперь человеческий разум не в силах ни объять Вселенную, о которой мы говорим, ни представить, насколько ничтожно по сравнению с ней все то, что нас окружает?

А. Азимов. Вселенная

Введение

На протяжении веков величайшие умы человечества – Аристотель, Коперник, Кеплер, Галилей и Ньютон – считали окружающий мир однородным и неизменным. На эти же свойства Вселенной изначально опирался в своих построениях Эйнштейн. Создатель теории относительности считал, что Вселенная в целом не эволюционирует, пребывая в застывшем состоянии, и никак не подвластна ходу времени. Правда, в отдельных местах Метагалактики могут возникать и гаснуть звезды и даже целые галактики, но общая картина мира остается принципиально неизменной. Однако реальная Вселенная оказалась совершенно иной, не статически застывшей, а динамичной и развивающейся: вещество Вселенной не может находиться в покое – оно должно либо расширяться, либо сжиматься.

Сегодня мы более-менее достоверно знаем, что наша Вселенная возникла из «ничего» в результате чудовищного катаклизма, получившего название «Большой взрыв».

В конце сороковых годов прошлого столетия битва между сторонниками вечной и неизменной Вселенной и расширяющимся миром достигла своего апогея. В то время одним из главных противников динамической эволюционирующей модели был британский астроном Фред Хойл.

Что же именно «взорвалось» и что вообще существовало до Большого взрыва, судя по всему надолго еще останется одной из самых жгучих загадок мироздания….

Современная космология, как наука о Вселенной в целом, построена на фундаменте релятивистской теории тяготения – общей теории относительности Эйнштейна. Из уравнений Эйнштейна следует, что массивные тела прогибают пространство, как резиновую пленку, вследствие чего кривизна пространства – времени связана с плотностью массы и энергии. Впервые применив общую теорию относительности к Вселенной в целом, Эйнштейн с изумлением обнаружил, что она должна изменяться со временем. Однако внутренне творец и бунтарь Эйнштейн был все же уверен, что мироздание стационарно и его структура постоянна в пространстве и времени. Поэтому он ввел в полученные уравнения дополнительное слагаемое, обеспечивающее неизменность Вселенной.

Рис.0 Взрыв мироздания

Современный вид диаграммы Хаббла

Можно подойти к вопросу о хаббловском расширении космоса, используя более привычные, интуитивные образы. Например, представим себе солдат, выстроенных на площади с интервалом 1 м. Пусть затем подается команда раздвинуть за одну минуту ряды так, чтобы этот интервал увеличился до 2 м. Каким бы образом команда ни выполнялась, относительная скорость двух рядом стоящих солдат будет равна 1 м/мин, а относительная скорость двух солдат, стоящих друг от друга на расстоянии 100 м, будет 100 м/мин, если учесть, что расстояние между ними увеличится от 100 до 200 м. Таким образом, скорость взаимного удаления пропорциональна расстоянию. Отметим, что после расширения рядов остается справедливым космологический принцип: галактики-солдаты по-прежнему распределены равномерно, между различными взаимными расстояниями сохраняются те же пропорции.

Т. Редже. Этюды о Вселенной

В начале прошлого века замечательный петербургский математик Александр Фридман оспорил выводы признанного гения и доказал, что мир, заполненный веществом, должен расширяться или сжиматься. Полученные Фридманом уравнения лежат в основе современной космологии. Несколько позже выдающийся американский астроном Эдвин Хаббл пришел к выводу о том, что далекие галактики уходят от нас со скоростью, пропорциональной расстоянию.

Чем дальше галактика, тем больше ее скорость, а коэффициент пропорциональности получил название постоянной Хаббла. Этот вывод Хаббл получил на основе физического эффекта «красного смещения», проявляющегося в покраснении цвета галактик при их удалении. Астрофизики сразу же заподозрили, что в этом виноват эффект Доплера: приближаясь волны становятся короче, а удаляясь – длиннее.

Для звуковых волн это явление впервые исследовал акустик Кристиан Доплер: если к нам приближается электричка, то мы слышим гудок высокого тона, а когда она проносится мимо, высокий тон переходит в низкий. Эта ситуация полностью справедлива и для электромагнитных волн (см. цветную вклейку).

В астрономии по доплеровскому сдвигу частоты испускаемого света судят о скорости движения небесных тел. Наблюдение доплеровского сдвига частот света удаленных галактик в виде так называемого красного смещения свидетельствует о том, что все галактики удаляются от нас со скоростями примерно до половины скорости света, возрастающими с расстоянием.

Это было достаточно неожиданно, ведь в то время считалось, что галактические скопления движутся хаотично, и количества приближающихся и удаляющихся объектов примерно одинаковы. Так появилась знаменитая статья Хаббла «Связь между расстоянием и лучевой скоростью внегалактических туманностей», в которой астроном доказывал, что далекие галактики разлетаются от нас во всех направлениях со скоростью, пропорциональной расстоянию до них. Впоследствии эта зависимость получила название закона разлета Хаббла, а коэффициент пропорциональности между скоростью и дистанцией – постоянной Хаббла.

Таким образом, теоретические модели расширяющейся Вселенной теории относительности получили неожиданное подтверждение при наблюдении эффекта красного смещения для дальних галактик. При этом расширение происходит одновременно в каждой точке и у него нет центра. В какую бы галактику мы ни попали, нам будет казаться, что все другие дальние галактики удаляются с красным смещением, пропорциональным расстоянию до них.

Само пространство как бы раздувается. Это ясно из примера с воздушным шариком: если нарисовать на нем галактики и начать надувать его, то расстояния между ними будут возрастать, причем тем быстрее, чем дальше они расположены друг от друга. Следует сразу сделать замечание, что при всей своей общей наглядности такая модель неточна, ведь в ней сохраняется только взаимное расположение галактик, а сам размер их ассоциаций растет. Правильнее было бы наклеить группы различных галактик на поверхность шара-Вселенной. Тогда их размеры действительно не будут меняться, и из любой точки мы увидим разбегающиеся системы галактик.

Сейчас трудно сказать, кому же из физиков или астрономов пришла первая мысль об обратном отсчете времени, настолько это кажется очевидным. И действительно, если сегодня группы галактик стремительно разлетаются во все стороны, то когда-то в момент их рождения они должны были бы занимать гораздо меньший объем. А дальше вся Вселенная вообще должна бы сжаться в точку…

Современные расчеты показывают, что рождение нашего мира произошло где-то 13,7 млрд лет назад. Именно тогда по не совсем ясным причинам возник вселенский катаклизм, чем-то (но далеко не всем!) напоминающий взрыв с разлетающимися во все стороны частицами и полями.

Современная теория Большого взрыва позволила объяснить множество проблем, стоявших перед космологией, правда, возникли и новые вопросы:

Что было до Большого взрыва?

На что же был похож Большой взрыв?

Почему наше пространство имеет нулевую кривизну геометрии Евклида?

Почему Вселенная сравнительно однородна, ведь при любом взрыве вещество разлетается в разные стороны неравномерными осколками?

Что привело к начальному разогреву новорожденной Вселенной до невообразимо высокой температуры?

Глава 1. Тайна космологической сингулярности

…В этот момент нарушается математически корректное описание геометрии пространства – времени. Такое свойство характерно для большинства физически приемлемых решений уравнения Эйнштейна. Существование таких сингулярностей наводит на мысль о некоторой неадекватности общей теории относительности. Очень может быть, что некая будущая теория окажется свободной от такого «греха».

Впрочем, некоторые космологи полагают, что как раз и следует ожидать нечто подобное сингулярности, ибо образование Вселенной – событие особенное. Если до нулевого момента ничего не существовало, то «акт творения» знаменует собой полнейшее нарушение закона сохранения вещества и энергии. Такое нарушение фундаментальных законов физики можно объяснить только предполагая существование сингулярности.

Дж. Нарликар. Неистовая Вселенная

Проходят миллиарды лет, пока становятся зримо видны изменения в строении галактик или в структуре составляющих их звезд. И астрономы, если они хотят исследовать какой-либо долговременный космический процесс, должны запускать «машину времени воображения» на основе логического мышления. Ведь если галактики в настоящий момент разлетаются во все стороны, то вполне можно представить обратный ход событий. Тогда, перематывая назад кадры вселенского кино естественной истории, мы увидим, как материя сожмется в одну точку.

Как гласит теория Большого взрыва, Вселенная возникла из точки с нулевым объемом и бесконечно высокими плотностью и температурой. Это состояние, называемое сингулярностью, не поддается математическому описанию, оно характеризуется огромной плотностью массы и кривизной пространства.

С сингулярности началось взрывное расширение Вселенной. По неизвестным нам (пока) причинам в один прекрасный миг сингулярная точка взорвалась, и с той поры ее вещество все время расширяется, преобразуясь, распадаясь и самоорганизовываясь. Может быть, через многие миллиарды лет расширение сменится сжатием до новой сингулярной точки…

Как ни малы или велики масштабы окружающего мира, их все же можно как-то оценить рядом сопоставлений. Значительно труднее представить себе, что значит «начало начал» нашего мира. Здесь один из главных вопросов связан с тем состоянием Вселенной, которое предшествовало «начальному моменту». Получается, что наш мир как бы вдруг появился «из ничего»? Очень часто процесс Большого взрыва иллюстрируют картиной, напоминающей взрыв мины или гранаты, когда в пространстве рождаются и разлетаются частицы и атомы, подобно осколкам и газам. Однако эта аналогия совершенно не объясняет, как же возникло и стало стремительно расширяться само пространство – время.

Рис.1 Взрыв мироздания

Один из сценариев рождения нашего мира

Рождение замкнутой Вселенной (шарик на последней части IV рис.) из плоского мира Минковского (М на стадии I). На промежуточных стадиях, вдали от флуктуации, приводящей к рождению (отщеплению) шарика, метрика остается плоской («минковской»). Спонтанное рождение мира «из ничего». До момента t = 0 метрика (и, в частности, время) не существовала.

Я. Б. Зельдович. Возможно ли образование Вселенной «из ничего»?

Подобные вопросы еще сравнительно недавно если и озвучивались, то получали единый, можно сказать, хрестоматийный ответ: это лежит за гранью науки. Тут приводилось понятие космологической сингулярности стянутой в точку материи Вселенной с бесконечными (правильнее сказать – стремящимися к бесконечности) плотностями вещества и энергии. Стена космологической сингулярности долго закрывала сущность того, что же и почему взорвалось. Конечно, долго такое положение в космологии продолжаться не могло, и в шестидесятых годах прошлого века стали появляться «запредельные» сценарии рождения нашего мира из ничего.

Естественно, бесконечность – понятие математическое, и в нашем случае оно просто обозначает рамки применимости тех или иных моделей развития Вселенной, которые ученые называют космологическими сценариями. Что происходит в области сингулярности (да и существует ли она в реальности?), не знает никто, но логически очевидно, что там становятся неприменимы многие законы привычного для нас мира, описываемые теорией относительности и квантовой физикой.

Одними из первых свои версии предложили академики Яков Зельдович и Андрей Сахаров. По мысли этих выдающихся российских физиков, прежде всего надо было выяснить, не противоречит ли само предположение об образовании Вселенной «из ничего» основным законам сохранения, которые являются фундаментом современной физики. Причем нужно учесть, что самый общий закон сохранения материи в самых различных процессах так и формулируют: «из ничего не может получиться ничего». Подобную формулировку академики Зельдович и Сахаров отвергали «с порога», считая ее наивной и ненаучной, поскольку есть закон сохранения энергии и электрического заряда.

* * *

Прежде всего рассмотрим закон сохранения электрического заряда. Тут вроде бы все ясно и достаточно очевидно – запрета на рождение электронейтральной Вселенной пока еще никто не выявил, и наш мир вполне может содержать равное количество как положительных, так и отрицательных зарядов. Почему мы склоняемся именно к такой структуре мироздания? Тут можно рассуждать от противного: ведь если бы положительное и отрицательное электричество не компенсировали друг друга, то вокруг постоянно бушевал бы электрический шторм – возникали бы и тут же гасли сильнейшие электрические поля, разрушая однородность нашего мира.

Итак, Вселенная, судя по всему, строго нейтральна и вполне могла возникнуть «из ничего», не противореча закону сохранения электрического заряда.

Теперь следует проанализировать выполнение закона сохранения барионного заряда. Ядро любого атома состоит из равного количества протонов и нейтронов, поэтому для стабильности материи на атомарном уровне требуется постоянство суммы этих частиц. Ведь даже радиоактивность атомных ядер проявляет себя либо как перегруппировка нейтронов с протонами, либо как взаимные превращения нейтронов в протоны, и наоборот. Если бы закон сохранения барионного заряда не выполнялся, то протон, одна из основных ядерных частиц, как в свободном, так и в связанном ядерном состоянии был бы нестабильным, периодически распадаясь с выделением громадной энергии. Поскольку этого еще никто не наблюдал, то и вся Вселенная, возникшая «из ничего», должна иметь нулевой барионный заряд.

Рассмотрим закон сохранения энергии для Вселенной в целом? Напомним, что энергия покоящихся частиц эквивалентна ее массам – следовательно, сохранение энергии покоя эквивалентно сохранению массы. Мы уже знаем, что общая теория относительности связывает геометрию пространства и тяготение. При этом релятивистская теория гравитации Эйнштейна делает вывод: в замкнутом мире отрицательная энергия гравитации должна в точности компенсировать положительную энергию тяготеющей материи. Таким образом энергия «ничего» равна нулю, как и энергия замкнутой Вселенной. Поэтому закон сохранения энергии не должен противоречить образованию «из ничего» геометрически замкнутого мироздания. Вот так общая теория относительности устраняет последнее препятствие на пути возникновения нашего мира «из ничего».

Но что же в действительности вызвало Большой взрыв? Для ответа понадобилось полвека исследований, в результате которых выстроилась одна из самых удивительных в современной космологии гипотез рождения мироздания. Трудно даже перечислить всех физиков, астрономов и космологов, принесших свои оригинальные идеи на алтарь науки. Больше всего их было сформулировано в работах выдающихся физиков прошлого и нынешнего столетия: Джона Уилера, Стивена Хокинга, Якова Зельдовича, Андрея Сахарова и Игоря Новикова. Их суть сводится к тому, что наша Вселенная является результатом развития гигантского искажения некоего суперпространства.

Постепенно «стандартную» теорию возникновения нашего мира сменила оригинальная разработка видных российских физиков Эраста Глинера, Алексея Старобинского, Давида Киржница и Андрея Линде. В этом космологическом сценарии описывалось рождение Вселенной в процессе сверхбыстрого расширения: инфляции. Основой для описания этого явления послужили общая теория относительности Эйнштейна и хорошо изученный раздел теоретической физики – квантовая теория поля.

Еще совсем недавно у физиков существовало своеобразное табу на исследование пространства и времени за границей рождения Вселенной. Сейчас уже возникло довольно много теорий, описывающих, как могло выглядеть то очень таинственное нечто, в чем и возник наш мир. Во-первых, это, конечно же, должно быть не обычное состояние иного пространства – времени. Ведь в нашей повседневной реальности вокруг не рождаются новые Вселенные! И даже если бы это происходило, мы просто перенесли бы вопросы рождения мироздания в эту старую Вселенную, а потом в еще более старую, и так далее.

В математике такой процесс хождения по кругу одних и тех же понятий носит название «дурная бесконечность» и он по определению не способен дать чего-либо нового познанию. Поэтому физики и рассматривают среду, где возник наш мир, как суперпространство со многими измерениями.

Для наглядности достаточно взять лист бумаги и представить, что на нем находится наше мироздание нулевой толщины, тогда окружающее лист пространство и будет моделью исходного суперпространства.

И тут возникает очень любопытная логическая головоломка. Ведь если геометрического центра Большого взрыва не существует, и он происходил (а по некоторым теориям и происходит «повсюду»), то где-то вокруг нас и спрятано суперпространство. Первые подозрения, как всегда в подобных случаях, вызывают так называемые сугубо квантовые объекты.

Для тех, кто совсем не знаком с основами квантовой механики, поясним, что это сверхмикроскопические частицы, ведущие себя совершенно непостижимым образом. Если представить наше мироздание состоящим из этажей, то эти удивительные частицы будут обитать в подвале, где-то вблизи самого фундамента мира. Там, в кажущейся пустоте вакуума, постоянно бушуют шторма физических полей, периодически заставляя его выплескивать энергию (флуктуировать) на более высокие масштабные этажи материи. При этом в сверхпространстве возникает вереница возмущений (по-научному – топологических аномалий), чем-то напоминающих пузырьки в пенящейся жидкости. Внутри каждого пузырька существует особенный мир и собственное время, стрелка которого пробегает краткий миг от рождения до схлопывания. Подавляющая доля таких миров-пузырьков имеет невообразимо малый период существования, но при этом они успевают проявить себя как полноценные замкнутые мини-вселенные.

Что же задержало в свое время квантовый пузырек нашей Вселенной от практически мгновенного схлопывания? Первично неустойчивое состояние вакуума в результате образования пузырька новой Вселенной могло привести к тому, что внутри возникшего мира вакуум начал неожиданно менять свои свойства, стремясь к новому устойчивому пределу. Этот процесс перестройки вакуума должен по теоретическим расчетам сопровождаться гигантским выделением энергии, результатом чего и явился Большой взрыв. Этот процесс можно представить как своеобразный взрыв вакуума – взрыв непустой пустоты!

Естественно, грандиозный масштаб таких взрывных процессов, скрывающихся в окружающем нас мире, вызывает очень много вопросов к новой космологии. Однако исторический опыт науки, особенно последних десятилетий, показывает плодотворность подобных смелых попыток заглянуть за границу известного.

Рождение и гибель виртуальных Вселенных является близким аналогом хорошо известного в квантовой физике эффекта поляризации вакуума – рождения и гибели виртуальных пар частиц-античастиц.

Физиков всегда интересовала природа движущих сил и сам изначальный процесс Большого взрыва. Именно поэтому сейчас предпринимаются многочисленные попытки построить универсальную теорию, которая была бы применима к любым этапам эволюции нашей Вселенной. Поскольку в первые мгновения после Большого взрыва самой главной силой была гравитация, считается, что достичь этой цели возможно только в рамках пока гипотетической квантовой теории гравитации.

Одно время физики надеялись, что квантовая гравитация будет описана с помощью теории суперструн.

Объектами этой теории являются разнообразные струны и многомерные мембраны, которые летают в пространстве и времени сверхмикроскопического мира. Однако у этой теории есть свои трудности, и сейчас теоретики стали уделять больше внимания иным подходам к описанию среды, из которой возникла Вселенная, в частности, петлевой квантовой гравитации.

Именно в рамках петлевой квантовой гравитации недавно был получен очень впечатляющий результат. Оказывается, из-за квантовых эффектов начальная сингулярность исчезает. Большой взрыв перестает быть особой точкой, и удается не только проследить его протекание, но и заглянуть в самое таинственное досингулярное прошлое.

Уже многие столетия, начиная с античных времен, естествоиспытатели и философы задаются вопросом: не из дискретных ли частей состоят пространство и время? Действительно ли окружающий нас объем непрерывен, или больше похож на кусок ткани, сотканной из отдельных волокон? Если бы мы могли наблюдать чрезвычайно малые объекты, то увидели бы атомы пространства, неделимые мельчайшие частицы объема? А как быть со временем: плавно ли происходят изменения в природе, или мир развивается крошечными скачками, словно компьютер?

За последние годы ученые заметно приблизились к ответам на эти вопросы.

Согласно теории со странным названием «петлевая квантовая гравитация» пространство и время действительно состоят из дискретных частей. Расчеты, выполненные физиками-теоретиками, описывают простую и красивую картину, которая помогает нам объяснить загадочные явления, относящиеся к зарождению нашей Вселенной и Большому взрыву. Но главное достоинство упомянутой теории заключается в том, что уже в ближайшем будущем ее предсказания можно будет проверить экспериментально, и ученые смогут обнаружить атомы пространства и времени, если они действительно существуют.

В петлевой теории гравитации главные объекты – невообразимо малые квантовые ячейки пространства, определенным способом соединенные друг с другом. Их связью и состоянием управляет некое внутреннее поле. Величина поля – некий «таймер» для ячеек: переход от слабого поля к более сильному выглядит совершенно так, как если бы существовало прошлое, которое способно повлиять на будущее.

Этот закон устроен так, что для достаточно большой Вселенной с малой концентрацией энергии ячейки как бы сплавляются друг с другом, образуя привычное нам «сплошное» пространство – время.

Многие космологи и астрофизики утверждают, что всего этого уже достаточно, чтобы решить задачу о том, что происходит с Вселенной при приближении к сингулярности. Решения полученных ими уравнений показали, что при экстремальном сжатии Вселенной пространство рассыпается, квантовая геометрия не позволяет уменьшить его объем до нуля, неизбежно происходит остановка и вновь начинается расширение. Эту последовательность состояний можно отследить как вперед, так и назад во времени, а значит, до Большого взрыва должен быть еще и Большой хлопок – коллапс «предыдущей» Вселенной. При этом свойства предыдущей Вселенной не теряются в процессе ее гибели, а передаются в нашу.

Впрочем, можно принять и точку зрения знаменитого космолога Стивена Хокинга.

Несмотря на полный паралич и невозможность общаться обычным способом именно его мощный интеллект управляет той исторической кафедрой, которую когда-то занимал великий Ньютон. Кроме чтения лекций (с помощью синтезатора речи) Хокинг пишет научно-популярные книги и создает интереснейшие научные гипотезы, всегда находящиеся на самом переднем крае научного познания. Хокинг считает, что все наши космологические теории основаны на предположении, что пространство – время гладкое и почти плоское. Это означает, что все данные теории нарушаются в момент Большого взрыва, ведь пространство – время бесконечной кривизны трудно назвать почти плоским! Таким образом, если что-то и предшествовало Большому взрыву, оно не даст ключа к пониманию того, что случилось позже, потому что предсказуемость нарушается в момент Большого взрыва. Аналогично, зная только то, что случилось после него, мы не можем определить, что было раньше. По мнению Хокинга события, предшествовавшие Большому взрыву, не могут иметь никаких последствий для нас и поэтому не должны приниматься в расчет при научном описании Вселенной.

Глава 2. Под лавиной космологической инфляции

В настоящее время физики вынашивают мысль, что Вселенная в ее первоначальном «игрушечном» состоянии, по-видимому, образовалась из ничего в результате случайного процесса и что, может быть, даже существует бесконечное число таких крошечных протовселенных, непрерывно образующихся в бесконечном объеме пустоты, и мы живем в одной из бесчисленного множества вселенных.

Впрочем, большинство физиков довольствуются тем, что прослеживают Вселенную вспять до Большого взрыва и тут ее оставляют. Есть значительная неуверенность относительно начальных стадий этого огромного феномена, а также перехода от Большого взрыва к Вселенной в ее настоящем виде. Самые ранние периоды эволюции Вселенной все еще за семью печатями.

А. Азимов.Взрывающиеся солнца.Тайны сверхновых

Представим себе горный склон, покрытый снегом, в который вкраплены разнородные мелкие предметы – камешки, ветки, кусочки льда. Кто-то, находящийся на вершине этого склона, слепил снежок и пустил его катиться с горы. Двигаясь вниз, снежок увеличивается в размерах, поскольку на него налипают новые слои снега со всеми вкраплениями. Чем больше размер снежка, тем быстрее он будет расти. Очень скоро снежный шарик превратится в огромный ком. Если склон заканчивается пропастью, то он полетит в нее, и скорость полета будет все время увеличиваться. Достигнув дна, ком разобьется, и его составные части разлетятся во все стороны.

Теперь опишем основные положения теории, используя приведенную аналогию. Прежде всего, необходимо построить «арену действия» и для этого ввести гипотетическое поле, которое физики назвали «инфлатонным» (от слова «инфляция»). Это поле, как снег на склоне горы, заполняет собой все пространство. Благодаря случайным колебаниям оно принимает разные значения в произвольных пространственных областях и в различные моменты времени. Ничего существенного не происходит до тех пор, пока случайно не образовывается однородная конфигурация этого поля критического размера.

Сразу после этого пространственная область, занятая флуктуацией, начинает очень быстро увеличиваться в размерах, а учитывая стремление инфлатонного поля занять положение, в котором его энергия минимальна, процесс расширения приобретает лавинообразный характер, и по склону горы мчится снежный поток. Такое расширение продолжается невообразимо малую долю секунды, но этого хватает, чтобы диаметр Вселенной вырос почти до одного сантиметра.

Инфляция заканчивается, когда инфлатонное поле достигает минимума энергии – дальше падать некуда. При этом накопившаяся кинетическая энергия переходит в энергию рождающихся и разлетающихся частиц, иначе говоря, происходит нагрев Вселенной. Как раз этот момент и называется сегодня Большим взрывом.

Инфлатонная гора, о которой говорилось выше, может иметь очень сложный рельеф – включая разнообразные минимумы – долины и впадины, холмы и кочки. Снежные комья (будущие вселенные) непрерывно рождаются наверху горы колебаниями – флуктуациями – поля. Каждый ком может скатиться в любой из минимумов, породив при этом свою вселенную со специфическими параметрами. Новые вселенные могут существенно отличаться друг от друга как составом материи, так и физическими законами. Что же касается свойств нашей Вселенной, то они удивительным образом оказались приспособленными к тому, чтобы в ней возникла разумная жизнь. Другим вселенным в этом отношении, возможно, повезло меньше.

В последние десятилетия развитие космологии и физики элементарных частиц позволило более подробно рассмотреть самую начальную сверхплотную стадию инфляционного расширения Вселенной. Получается, что Вселенная рождалась в два приема: проходя стадию «увеличения объема», заполненного физическим полем, но не содержащим ни вещества, ни излучения, – и стадию появления вещества и излучения и последующего образования из него звезд, галактик, планет и всего прочего.

Ученые, разрабатывающие космологические сценарии инфляционного рождения нашего мира, предлагают самые разнообразные физические механизмы этого процесса. Среди прочих гипотез выделяется оригинальностью теория вечной инфляции, предполагающая, что квантовые флуктуации, подобные тем, которым мы обязаны существованием нашего мира, могут возникать самопроизвольно и в любом количестве. Они способны давать начало рождению все новых и новых вселенных. Не исключено, что и наше мироздание вышло из флуктуационной зоны, сформировавшейся в мире-предшественнике. Точно так же можно допустить, что когда-нибудь и где-нибудь в нашей собственной Вселенной возникнет флуктуация, которая создаст юную вселенную совсем иного рода, тоже способную в дальнейшем к космологическому «деторождению». Можно пойти дальше и построить модель, в которой инфляционные вселенные возникают непрерывно, отпочковываясь от своих родительниц и находя для себя собственное место.

Случайные отклонения энергии физического ваку ума, запускающие инфляционный процесс, могут случаться в неодинаковых формах. Это означает, что остывшие после инфляции вселенные отнюдь не копируют друг друга. Речь идет даже не о том, что они могут различаться по внешнему виду и потому эволюционировать по-разному. Вполне можно допустить, что в них устанавливаются различные физические законы или одни и те же законы, но с разными значениями фундаментальных физических постоянных (например, скорости света). Эти вселенные не обязательно будут обладать лишь тремя пространственными осями, число измерений может быть и другим.

Рис.2 Взрыв мироздания

Сценарий хаотической инфляции

Помните, мы говорили об искривлении пространства? Двухмерный мир на листе бумаги нетрудно изогнуть таким образом, что получится какая-нибудь незамкнутая поверхность, например, нечто похожее по форме на седло. А если очень уж постараться, то можно согнуть плоский лист и в замкнутую сферу.

Подобным же образом искривленное трехмерное пространство может быть разомкнутым, а может быть и замкнутым. Каким именно оно станет, зависит от многих обстоятельств. Например, если плотность материи в таком мире будет ниже некоей критической величины, то он окажется незамкнутым, сможет расширяться до бесконечности. Тогда луч света, выпущенный из какой-либо точки внутри него, никогда не вернется назад, разве что отразится, натолкнувшись на какую-либо преграду. Если же плотность вещества превысит некоторое критическое значение, то пространство окажется замкнутым. Оно будет то расширяться, то сжиматься, не выходя все-таки за некоторые пределы.

В свое время Ньютон полагал, что пространство плоское и бесконечное. Эйнштейн разрешил нашему миру быть не только безграничным и кривым, но и замкнутым. Новейшие данные, полученные в процессе исследования реликтового излучения, свидетельствуют о том, что Вселенная вполне может быть замкнута сама на себя. Получается, что если все время удаляться от Земли, то в какой-то момент начнешь к ней приближаться и в конце концов вернешься назад, облетев всю Вселенную.

Наглядно такой пульсирующий замкнутый мир можно представить в виде резинового шара, который то раздувается, то спускает воздух. Разумеется, при всем старании нам вряд ли удастся раздуть камеру больше критического объема поверхности, за которым последует ее разрыв. В данном замкнутом пространстве свет, направленный в одну сторону, может облететь всю полость и вернуться с другой стороны, так и не вырвавшись наружу.

Видный физик-теоретик Моисей Марков создал математический образ подобного мира и назвал такие образования фридмонами – в честь впервые указавшего на возможность их существования российского ученого Александра Фридмана.

Удивительные вещи должны происходить в таком замкнутом мире. Попробуем описать их опять-таки при помощи упрощенной двухмерной аналогии. Пусть наши плоские существа живут теперь не просто на искривленной плоскости, а на поверхности сферы. Для наглядности можно воспользоваться моделью двумерного мира, населенного плоскими разумными существами. В таком мире действовали бы иные физические законы, и сила взаимодействия между двумя зарядами изменялась бы в другой пропорции от расстояния.

Двумерные существа, будучи соответствующим образом искривленными, могли бы жить на искривленной поверхности, например на сфере, центр которой недоступен для наблюдений их двумерными приборами. Они могли бы построить модель Вселенной как целого, безграничную, но конечную, содержащую конечное количество квадратных километров. Модель охватывала бы все, доступное их чувствам и физическим приборам, но с точки зрения внешнего наблюдателя их мир – лишь часть чего-то более обширного. Очевидно, вопрос, интересующий двумерных аборигенов, состоит в том, можно ли считать внутренность сферы с центром и охватывающее сферу внешнее пространство реально существующими, если до сих пор они себя никак не проявляли в сферическом мире и, может быть, никогда и не проявят? Нарисованная картина без особых проблем может быть перенесена и на трехмерные сферы, находящиеся в пустом (а пустом ли?) неискривленном (или даже искривленном) пространстве большего числа измерений.

Полностью замкнутый мир никоим образом, по идее, не проявляет себя вовне: из него не проникают наружу даже световые лучи. Значит, снаружи он должен представлять для стороннего наблюдателя нечто, не имеющее ни размеров, ни массы, ни электрического заряда.

Таким образом, в нашем воображении вырисовывается фантастическая картина. Быть может, и наша Вселенная со всеми ее солнцами, млечными путями, туманностями, квазарами – всего лишь один из фридмонов. Впрочем, фридмоны не обязательно должны заключать в себе только гигантские мироздания. Их содержимое может быть и более скромным: например, лишь одна галактика, звезда…

Если исходить из теории фридмонов, получается, что любая элементарная частица в принципе может оказаться входом в иные миры. Проникнув через ее поверхность, мы можем очутиться в иной вселенной с трудновообразимым содержимым, причудливыми галактиками, странными цивилизациями. Оглянувшись же назад, мы бы увидели, что наша родная Вселенная сжалась до микроскопических размеров. Если бы мы захотели вернуться назад, пришлось бы снова проделать весь путь по коридору между мирами.

Путешествуя по различным фридмонам, мы встречали бы каждый раз новую реальность, и наше путешествие по иным мирам продолжалось бы бесконечно. Интересно, что такие путешествия могли бы привести не только к перемещениям в пространстве, но и во времени. Так, во всяком случае, полагает Стивен Хокинг со своими единомышленниками.

В свете открытий последних лет инфляционная гипотеза получила существенное подтверждение, а некоторые астрофизики считают, что она вполне способна произвести своеобразный переворот в космологии. Суть инфляционного сценария заключается в следующем.

Кроме колебаний напряженности электромагнитных полей существуют также флуктуации энергии гравитационного поля – вот эти флуктуации тоже должны были усилиться при раздувании Вселенной и превратиться в гравитационные волны. Их можно было бы заметить, анализируя реликтовое излучение, – и тогда наступил бы окончательный триумф инфляционной гипотезы.

Сама гипотеза говорит, что Вселенная до Большого взрыва была частью чего-то гораздо большего. Это «нечто» существовало и существует всегда, и материя в нем находится в бесструктурном состоянии – нет ни атомов, ни частиц. Потом наш кусочек этого «нечто» начал стремительно раздуваться и за малые доли секунды из микроскопического превратился в гиганта: Вселенная растянулась и стала большего размера, чем мы видим. Она и сейчас больше, ведь мы видим меньше одной сотой ее части.

Вселенная по инфляционному сценарию выглядит совсем иначе, чем в космологии Фридмана. Главное следствие из развития инфляционной Вселенной – это невообразимое множество миров, возникающих каждое мгновение и исчезающих в коллапсе Большого хлопка.

Наша Вселенная – отнюдь не весь мир, а только маленькая его часть. Можно ли в таком случае выйти за его границы и попасть в «параллельный мир»? Математически это выглядит так, что между «пузырями» вселенных всегда есть инфляционные области. А там пространство расширяется столь быстро, что никакой сигнал не может успеть его преодолеть. Практически это означает, что из одной части Вселенной в другую попасть нельзя – для этого нужно каким-то образом попасть назад в прошлое, в доинфляционную стадию, и только потом пойти в будущее по линии эволюции новой Вселенной. Это сейчас представляется физикам невозможным.

Из новой космологии также следует, что возможны вселенные с другими свойствами, например, с другими квантовыми законами. Из всей новой космологии есть очень важное для нашего мира следствие: вариантов будущего Вселенной множество.

Глава 3. Новорожденная вселенная

Хотя действие известных ныне физических законов и невозможно экстраполировать в прошлое до самого начального момента или даже в область, где вступает в силу квантовая теория гравитации, тем не менее можно построить модель Вселенной начиная почти с первой микросекунды ее существования с достаточной уверенностью, что ее физическая сущность понимается правильно. Проследить развитие Вселенной на протяжении этих первоначальных удивительно кратких мгновений – бесспорно, одно из самых величайших, буквально захватывающих дух дерзаний, которые когда-либо предпринимались наукой. Поистине невероятно, что удается осмысленно описать состояние Вселенной в «возрасте» менее одной секунды!

П. Девис.Пространство и время в современной картине Вселенной

Когда Фридман впервые применил свои решения уравнений общей теории относительности ко всей Вселенной в целом, он получил настолько неожиданный результат, что некоторое время его оспаривал сам Эйнштейн. По Фридману получалось, что Вселенная, заполненная тяготеющим веществом, должна расширяться или сжиматься. Сегодня никто уже не пытается оспаривать полученные Фридманом уравнения и они лежат в основе всей современной космологии развивающейся и увеличивающейся Вселенной.

Оставалось понять, какие физические превращения происходили и происходят на различных стадиях расширения нашего мира. Одним из первых к исследованию данной интереснейшей проблемы рождения вещества нашего мира приступил видный американский физик русского происхождения Георгий Гамов. Именно он в сороковых годах прошлого века заложил основы фундамента современной космологии и космогонии – модели «горячей Вселенной».

Согласно модели горячей Вселенной, плазма и электромагнитное излучение на ранних стадиях расширения Вселенной обладали очень высокой плотностью и энергией. В ходе расширения Вселенной эта температура неуклонно падала. Затем равновесие образовавшегося водорода и гелия с излучением нарушилось – кванты излучения уже не обладали необходимой для ионизации вещества энергией и проходили через него как через прозрачную среду. Температура обособившегося излучения продолжала снижаться и к нашей эпохе составила всего несколько градусов Кельвина.

Это излучение сохранилось до наших дней как эхо эпохи бурного рождения Вселенной в катаклизме Большого взрыва. Оно служит одним из главных доказательств не только реальности сценария «горячей Вселенной», но и самого Большого взрыва. Реликтовое излучение образует микроволновой фон Вселенной. Родившись в пучинах Большого взрыва, оно заполняет все окружающее пространство так, что, если бы мы могли видеть в микроволновом диапазоне, то видели бы небосклон, пылающий во всех направлениях.

После инфляционной стадии чрезвычайно быстрого расширения пейзаж младенческого космоса стал стремительно меняться. До 300-тысячелетнего возраста Вселенная представляла собой кипящий котел из электронов, протонов, нейтрино и излучения, которые взаимодействовали между собой и составляли единую среду, равномерно заполнявшую всю раннюю Вселенную. Общее расширение Вселенной постепенно охлаждало эту среду и, когда температура упала до значения нескольких тысяч градусов, наступило время для формирования стабильных атомов.

Одной из самых интригующих загадок астрономии является наличие скрытой массы Вселенной (или темной материи), возникшей почти сразу после Большого взрыва, в отличие от знакомых нам атомов. Астрономы уже давно подозревали, что с составом Метагалактики происходит что-то неладное. Сказать что-либо более точное об основном составе вещества нашей Метагалактики трудно, поскольку оно очень слабо взаимодействует с радиоволнами и светом, чем и объясняются трудности его обнаружения. Однако, как и «нормальная» материя, темная составляющая Вселенной обладает гравитацией, поэтому способна сама собираться в сгущения и притягивать «нормальную». Сегодня уже достоверно известно, что галактики окружены кольцеобразными ореолами (гало) из темной материи, которые в десятки раз массивнее видимых частей галактик.

Темная материя, возможно, играла очень важную роль в эволюции нашего мира, служа теми гравитационными «зернами», которые вызывали увеличение плотности энергии в небольших областях пространства. Гравитационные силы этих областей притягивали к себе все окружающее вещество, становясь зародышами будущих галактик.

Астрономы предполагают, что важную роль на начальной стадии формирования галактик могли также играть черные дыры, собирая материю вместе посредством своей мощной гравитации. Новые открытия сверхмассивных черных дыр в центрах галактик только прибавляют в этом уверенности. Такая связь, естественно, вызывает вопрос и о том, что появилось сначала – галактика или черная дыра, хотя последние данные в большей степени указывают на то, что именно черные дыры формируют вокруг себя галактики.

До момента, который наступил примерно через миллион лет после начала расширения, Вселенная была непрозрачной для квантов света. Поэтому с помощью электромагнитного излучения нельзя заглянуть в предшествующую эпоху. На сегодняшний день это можно сделать только с помощью воображения и теоретических моделей.

Рис.3 Взрыв мироздания

Сценарий эволюции горячей Вселенной

Очень долго (и окончательно споры еще не утихли) ученые обсуждали вопрос: почему окружающая природа состоит из материи, а не антиматерии, и существуют ли антимиры во Вселенной.

Вначале расширения Вселенной ее температура была столь высока, что энергии хватало для рождения пар всех известных частиц и античастиц. Затем температура понизилась, так что почти все частицы и античастицы взаимно уничтожились – аннигилировали, превратившись в излучение. А фотоны, энергия которых к этому времени стала меньше, уже не могли порождать частицы и античастицы.

Наблюдения реликтового фона показали, что первоначальный избыток частиц по сравнению с античастицами составлял ничтожную миллиардную долю от их общего числа. Именно этих избыточных протонов и нейтронов хватило на то, чтобы сформировать вещество современной Метагалактики. Так наш мир не превратился в антимир.

Издалека видимая Вселенная кажется приблизительно однородной, т. е. все точки и направления в космосе почти равноправны. Это очень важное допущение однородности Метагалактики, распространяемое и на невидимую Вселенную, позволяет успешно строить космологам самые разные модели развития нашего мира – ведь описывать рельеф пустыни гораздо проще, чем нагромождения скал! Какая из этих моделей более-менее правильна, покажет будущее, а пока для окончательных выводов не хватает астрономических данных.

В открытой модели кривизна трехмерного пространства отрицательна или (в пределе) равна нулю, Вселенная бесконечна; в такой модели расстояния между скоплениями галактик со временем неограниченно возрастают, вплоть до гипотетического Большого разрыва.

В замкнутой модели кривизна пространства положительна, Вселенная конечна (но так же безгранична, как и в открытой модели); в такой модели расширение со временем сменяется сжатием до состояния Большого хруста.

Кратко историю нашего мира можно представить так:

Планковская эра: 10–43–10–37 с. Начинается с планковского момента и заканчивается инфляционным расширением Вселенной. Главное событие – появление гравитационного взаимодействия. Размер Вселенной в этот момент равен 10–35 м (планковская длина).

Эра великого объединения: 10–35–10–12 с. Начинается с разделения сильного и электрослабого взаимодействий и заканчивается отделением слабого взаимодействия и окончательным разделением взаимодействий.

Адронная эра: 10–6–1 с. Начинается с аннигиляции протон-антипротонных пар, завершается концом существования кварков и антикварков как свободных частиц.

Лептонная эра: 1 с. Формируются ядра водорода. Начинается ядерный синтез гелия.

Эра нуклеосинтеза: 3 мин. Вселенная состоит на 75 % из водорода и на 25 % из гелия, а также следовых количеств тяжелых элементов.

Радиационная эра: 1 неделя. К этому времени излучение термализуется.

Эра вещества: 10–380 тыс. лет. Вещество начинает доминировать во Вселенной. Ядра водорода и электроны рекомбинируют, Вселенная становится прозрачной для излучения.

Звездная эра: 1–9 млрд лет. Образование первых звезд и формирование первых галактик. Образование Солнечной системы.

Глава 4. Вселенское яйцо

Через миллиарды лет развитые формы разума смогут создавать новые вселенные. Возможно, они даже смогут выбирать, какие физические законы должны действовать в созданных ими мирах. Или им будет дано моделировать Вселенную такой же или даже сложнее, чем та, в которой сегодня мы полагаем свое существование.

М. Рис.Наш последний час

Одним из первых модель рождения нашего мира в виде некоего «вселенского яйца», которое расколол Большой взрыв, в духе физических представлений своего времени предложил бельгийский священник, астроном и математик Жорж Леметр. Будучи в Америке, Леметр ознакомился с результатами измерений галактического красного смещения и галактических расстояний, выполненных Эдвином Хабблом. Эти данные позволяли предположить, что галактики разбегаются по всем направлениям, причем их скорость пропорциональна удаленности от Солнечной системы. Леметр вычислил последующую эволюцию «взорвавшейся» Вселенной на основе уравнений общей теории относительности и вывел линейную зависимость между скоростью удаления галактик и расстоянием до них.

В теории расширяющейся Вселенной Леметра зародышем мироздания служит не просто «вселенское яйцо» конечных размеров, а сверхмассивный первичный атом, существовавший вне пространства и времени. Его взрыв порождает опять-таки сверхтяжелые и потому нестабильные осколки, фрагменты которых тоже должны делиться. Если принять во внимание количество частиц, которое по современным оценкам содержит Вселенная, то получится, что атом-отец и его потомки во множестве поколений должны претерпеть несколько сотен делений и на этом остановиться.

Однако такая схема даже семьдесят лет назад не могла вызвать доверия. В процессе множественных делений в конце концов должны были возникать максимально устойчивые атомы. А поскольку титул абсолютного чемпиона ядерной стабильности принадлежит железу, то в космических масштабах именно оно должно было оказаться самым распространенным элементом. Однако в тридцатые годы прошлого века астрономы уже достоверно знали, что Вселенная почти полностью состоит из водорода и гелия. Несомненным достоинством модели Леметра было предсказание и объяснение закона Хаббла. Но данные об элементном составе Вселенной не согласовывались с теорией первичного атома. На макроуровне концепция бельгийского ученого работала превосходно, а на микроуровне заводила в тупик.

Именно на этом этапе в игру вступил Георгий Гамов. Гамов познакомился с моделью нестационарной Вселенной еще на студенческой скамье, когда учился у Фридмана. По окончании Ленинградского университета он посвятил себя ядерной физике и выполнил несколько классических работ, в частности построил теорию альфа-распада и предложил капельную модель ядра. Впоследствии он эмигрировал и в своих исследованиях полностью переключился на астрофизику. Основываясь на работах Леметра, Гамов начал поиск решения проблемы возникновения в Большом взрыве окружающих нас химических элементов.

Поскольку расширение Вселенной приводит к ее постепенному охлаждению, сжатие должно вызывать обратный эффект. Поэтому, исследуя модель Леметра назад во времени почти до исходного момента, Гамов заключил, что сразу после рождения мира все имевшееся вещество было чрезвычайно нагрето. Это был огромный шаг вперед по сравнению с леметровским атомом, для которого понятие температуры вообще не имело смысла. Однако следовало еще определиться с составом первичной материи.

Teleserial Book