Читать онлайн Рассказ предка. Паломничество к истокам жизни бесплатно
RICHARD DAWKINS
THE ANCESTOR'S TALE: A PILGRIMAGE TO THE DAWN OF EVOLUTION
First published by Weidenfeld & Nicolson Illustrated Ltd, London
Фонд некоммерческих программ “Династия” основан в 2002 году Дмитрием Борисовичем Зиминым, почетным президентом компании “Вымпелком”.
Приоритетные направления деятельности Фонда – развитие фундаментальной науки и образования в России, популяризация науки и просвещение.
В рамках программы по популяризации науки Фондом запущено несколько проектов.
В их числе – cайт elementy.ru, ставший одним из ведущих в русскоязычном Интернете тематических ресурсов, а также проект “Библиотека ‘Династии’” – издание современных научно-популярных книг, тщательно отобранных экспертами-учеными.
Книга, которую вы держите в руках, выпущена в рамках этого проекта.
Более подробную информацию о Фонде “Династия” вы найдете по адресу: www.dynastyfdn.ru.
Введение
Высокомерие ретроспективы
История не повторяется – она рифмуется.
Марк Твен
История повторяется, и это один из ее недостатков.
Кларенс Дарроу
Историю можно представить так: череда неприятностей. Это замечание [Арнольда Тойнби] можно считать предостережением от двух соблазнов, однако я, должным образом предупрежденный, все же поддамся обоим. Во-первых, историк всегда испытывает соблазн искать в прошлом повторяющиеся сценарии или, по крайней мере, вслед за Марком Твеном пробует отыскать для всего причину и рифму. Однако эта склонность не по душе тем, кто, согласно другому высказыванию Марка Твена, считает, что “история – дело случайное и беспорядочное”, что у нее нет ни законов, ни цели. Второй соблазн – высокомерие ретроспективы: соблазн усматривать в прошлом лишь пролог к настоящему (будто в жизни героев этого спектакля не нашлось дела важнее, чем быть нашими предшественниками).
Живущие под именами, о которых нам нет нужды задумываться, эти герои – реальные персонажи истории человечества, и в масштабе эволюции они появляются перед нами в борьбе, а не в согласии. Эволюционную историю можно представить как “череду проклятых видов”. Однако многие биологи согласятся со мной в том, что это представление изжило себя. Глядя на эволюцию в этом свете, можно упустить немало важного. Эволюция рифмуется, сценарии повторяются. И это не случайность. На то есть причины, хорошо нам известные: о них говорил еще Дарвин. Эти причины имеют биологический характер, и, в отличие от истории человечества или даже физики, они уже объединены в общую теорию, которую признают все образованные специалисты, пусть в различных интерпретациях. Описывая эволюционную историю, я не уклоняюсь от поиска единых сценариев и принципов, однако пытаюсь делать это как можно осторожнее.
А как же высокомерие ретроспективы? Стивен Джей Гулд однажды заметил, что главным символом эволюции в поп-культуре является карикатура, почти такая же вездесущая, как миф о леммингах, прыгающих со скалы: вереница неуклюжих обезьяноподобных предков, которые постепенно разгибаются, следуя за Homo sapiens sapiens. Человек здесь – венец эволюции (причем всегда мужчина, а не женщина).
Существует также физическая версия подобной точки зрения. Она не так очевидно высокомерна. Это антропный принцип, предполагающий, что законы физики нацелены на создание человечества. Этот взгляд не обязательно подразумевает высокомерие. Он не предполагает, что Вселенная создана для нас. Он означает лишь, что мы существуем в данной Вселенной и не смогли бы существовать в другой, которая была бы неспособна нас произвести. Физики указывают, что нет случайности в том, что мы видим звезды на небе, потому что звезды – это необходимая часть любой Вселенной, способной нас произвести. Опять-таки, это не означает, что звезды существуют затем, чтобы существовали мы. Дело просто в том, что без звезд в периодической таблице не было бы атомов тяжелее лития, а трех элементов слишком мало для жизни. Зрение может существовать лишь в такой Вселенной, где можно видеть звезды.
Здесь нужно кое-что прибавить. Принимая во внимание тот факт, что наше существование требует наличия физических законов, позволяющих нас создать, следует понимать, что существование таких могущественных правил может оказаться в высшей степени невероятным. В зависимости от принятых допущений физики могут решить, что множество Вселенных численно превосходит то подмножество, законы которого позволяют физике развиваться – от звезд к химии, от планет к биологии. Кое-кто может понять это так, что законы должны быть предусмотрены с самого начала (хотя мне непонятно, что это объясняет: ведь тут же возникает более сложная проблема: проблема существования столь же точного и невероятного Проектировщика).
Другие физики менее уверены, что законы могут меняться. В детстве мне не было очевидно, почему результат умножения пяти на восемь таков же, как и восьми – на пять. Я принял это как данность, потому что так говорили взрослые. И только потом понял (возможно, на примере с прямоугольниками), почему такие пары умножения не могут меняться независимо. Мы понимаем, что длина и диаметр окружности не могут быть независимыми, иначе у нас возник бы соблазн заявить о существовании множества Вселенных с различными значениями числа П. Некоторые физики (например лауреат Нобелевской премии Стивен Вайнберг) утверждают, что фундаментальные константы Вселенной, которые мы считаем независимыми, в некоем Великом объединении будут иметь меньше степеней свободы, чем нам представляется сейчас. Возможно, есть лишь один способ существования Вселенной. Это разрушило бы иллюзию антропной гипотезы.
Другие физики (в том числе сэр Мартин Рис, астроном и нынешний президент Королевского общества) признают, что стечение обстоятельств несомненно и требует объяснения. Они объясняют его, принимая за аксиому параллельное существование множества Вселенных, изолированных друг от друга, с различными законами и константами. Следовательно, мы во Вселенной, законы и константы которой допускают нашу эволюцию.
Физик-теоретик Ли Смолин предложил остроумную гипотезу в дарвинистском духе, которая объясняет очевидное неправдоподобие нашего существования с точки зрения статистики. В модели Смолина Вселенные порождают дочерние Вселенные с различными законами и константами. Дочерние Вселенные формируются в черных дырах, которые образует родительская Вселенная, и наследуют ее законы и константы. Однако при этом с некоей вероятностью происходят незначительные случайные изменения – “мутации”. В свою очередь, дочерние Вселенные, обладающие необходимыми для воспроизводства признаками (например, они должны достаточно долго существовать, чтобы успеть образовать черные дыры), передают законы и константы своим “дочкам”. Из звезд образуются черные дыры, а в них, по Смолину, зарождаются новые звезды. Таким образом, космологический естественный отбор благоприятствует Вселенным, обладающим необходимыми для рождения новых звезд признаками. Свойства Вселенной, которые будут передаваться следующим поколениям, попутно обеспечивают образование крупных атомов, включая необходимые для жизни атомы углерода. То есть мы не просто живем во Вселенной, способной породить жизнь. Вселенные эволюционируют, попутно оказываясь все лучше приспособленными к жизни.
Логика Смолина понятна не только дарвинисту, но и любому человеку с воображением. Но что физики думают по этому поводу, я сказать не могу. Вряд ли найдется физик, который счел бы эту теорию заведомо ошибочной. Скорее всего, ее назовут избыточной. Некоторые ученые, как мы видели, мечтают о “теории всего”, в свете которой предполагаемая точная настройка Вселенной так или иначе окажется заблуждением. Ничто из известного нам не исключает теорию Смолина. Сам Смолин считает ее достоинством верифицируемого – а это ученые ценят выше, чем многие непрофессионалы. Я рекомендую прочитать книгу Смолина “Жизнь космоса”.
“Высокомерие ретроспективы” применительно к биологии легче стало побороть благодаря Дарвину. У биологической эволюции нет привилегированной линии или цели. Эволюция достигала миллионов промежуточных целей (число их равняется числу выживших видов за время, доступное нашему наблюдению), и высокомерие (человеческое высокомерие) – вот единственная причина считать некоторые из этих целей преимущественными или “конечными”.
Это не означает, что эволюционная история лишена причин или “рифм”. Я верю, что сценарии повторяются. Также я верю (хотя сегодня этот вопрос является более спорным, чем когда-либо), что в некоторых отношениях она является направленной, прогрессивной и даже предсказуемой. Но прогресс вовсе не подразумевает движение к человеку, и нам приходится довольствоваться совсем слабым чувством предсказуемости. Ученые должны остерегаться видения истории, сфокусированного на человеке.
В качестве примера упомяну книгу (в целом хорошую, поэтому я не буду называть заглавие), в которой Homo habilis (вид человека, который предположительно является предковым по отношению к нам) сравнивается с предшественниками-австралопитеками. В книге сказано, что H. habilis “значительно более развит, чем австралопитеки”. То есть эволюция движется в некоем заданном направлении? Книга однозначно указывает на то, каково это предполагаемое направление. “Ясно видны первые признаки подбородка”. Наличие “первых” признаков заставляет нас ожидать вторых, третьих и так далее – вплоть до “настоящего” человеческого подбородка. “Зубы начинают напоминать наши…” Можно подумать, эти зубы были такими не потому, что соответствовали рациону H. habilis, а потому, что стремились стать похожими на наши! Отрывок заканчивается характерным замечанием о жившем позднее H. erectus:
Хотя лица их все еще отличаются от наших, взгляд их гораздо более человеческий. Они выглядят как незаконченные скульптуры.
Незаконченные? Такое можно сказать, лишь имея очень наивный взгляд на прошлое. В оправдание книги замечу, что если бы мы встретились с представителями H. erectus лицом к лицу, они бы, скорее всего, действительно показались нам незавершенными скульптурами – но лишь потому, что мы смотрим на них с человеческой точки зрения. Живые существа заняты выживанием. Они не бывают завершенными – и в то же время всегда “завершены”. Все это, похоже, относится и к нам.
“Высокомерие ретроспективы” искушает нас. С человеческой точки зрения, выход наших предков на сушу стал своего рода эволюционным обрядом посвящения. Этот важный шаг сделали в девонском периоде лопастеперые рыбы, немного напоминавшие современных двоякодышащих рыб. Глядя на ископаемые того времени, мы испытываем вполне простительное желание увидеть в них своих предков. При этом знание о произошедшем далее заставляет нас считать этих девонских рыб промежуточными звеньями на пути к наземным животным. Все их признаки и вправду являются промежуточными – то есть связанными с героической задачей выхода на сушу, которая положила начало новому этапу эволюции. Однако все происходило не так. Те девонские рыбы просто выживали. Перед ними не стояла задача эволюционировать, и они не стремились оставить след в истории. В книге об эволюции позвоночных, которую я цитировал выше, есть фраза о рыбе, которая
осмелилась выйти из воды на сушу в конце девонского периода, чтобы, образно выражаясь, преодолеть разрыв, отделяющий один класс позвоночных от другого, и дать начало амфибиям…
Однако в те далекие времена не существовало “разрыва”, а “классы”, которые сейчас выделяют ученые, различались тогда не сильнее, чем виды. Как мы увидим, эволюция не занимается “преодолением разрывов”.
Не обязательно делать объектом нашего повествования человека – H. sapiens. Я мог бы выбрать любой современный вид: например осьминога (Octopus vulgaris), льва (Panthera leo) или секвойю (Sequoia sempervirens). Интересующийся историей стриж, по понятным причинам гордящийся полетом, будет считать венцом эволюции стрижей (которые даже спариваются в воздухе). Стивен Пинкер предположил, что если бы слоны написали книгу по истории, они изобразили бы тапиров, прыгунчиков, морских слонов и обезьян-носачей первопроходцами на “хоботной” магистрали эволюции, которые сделали по ней первые неловкие шаги, но не прошли ее до конца. Слоны-астрономы задавались бы вопросом, есть ли на другой планете внеземные формы жизни, которые пересекли “носовой рубикон” и сумели перейти к полноценной хоботной жизни.
Но мы не стрижи и не слоны. Странствуя мысленно по минувшим эпохам, мы испытываем вполне естественное желание относиться с особой теплотой и интересом к виду, который является нашим предком (в это сложно поверить, но такой вид всегда есть). Трудно устоять перед соблазном представить его стоящим на некоей “магистрали” эволюции, а другим видам отдать второстепенные роли. Но есть один способ избежать этой ошибки, в то же время не отступив от исторической правды, и удовлетворить законное желание человека видеть себя точкой отсчета: двигаться по хронологической шкале в обратном направлении.
Движение назад во времени в поисках предков может иметь вполне оправданную цель. Эта цель – великий предок всего живого, и мы придем к нему независимо от того, с кого начнем путешествие: со слона или орла, стрижа или сальмонеллы, секвойи или человека. Обратная и прямая хронология хороши каждая для своей цели. Двигаясь в прошлое, мы, независимо от точки старта, придем к моменту единения всего живого. Прямая хронология эволюции млекопитающих (которые занимают на временной шкале лишь отрезок, пусть и довольно длинный) представляет собой историю растущего многообразия покрытых шерстью теплокровных животных. Обратная хронология, в которой отправной точкой выбирается любое современное млекопитающее, всегда будет сходиться к одному-единственному предковому млекопитающему: насекомоядному современнику динозавров, ведущему ночной образ жизни. Это частный случай конвергенции. В более частном случае к единому предку, жившему в период вымирания динозавров, будут сходиться все грызуны. В еще более частном случае все человекообразные обезьяны (включая людей) будут сходиться к общему предку, жившему около 18 млн лет назад.
В более крупном масштабе конвергенцию можно наблюдать, двигаясь в прошлое от любого позвоночного животного. А двигаясь в прошлое от любого животного, можно найти общего предка всех животных. И, наконец, выбрав точкой отсчета любое современное животное, растение, гриб или бактерию, мы доберемся до прародителя всего живого, вероятно, похожего на бактерию.
В предыдущем абзаце я употребил слово “конвергенция”. Однако я хочу приберечь его для совершенно другого понятия и в данном случае буду пользоваться словом “слияние” – или “рандеву”. Термин “коалесценция”, увы, уже зарезервировали генетики, которые используют его в более точном смысле – что-то вроде “слияния”, но не видов, а генов. Когда мы движемся назад во времени, предки из любой группы видов сближаются друг с другом. Точка встречи, или рандеву, – это и есть последний общий предок, которого я назову “сопредком”: например, предковый грызун, млекопитающее или позвоночное. Самый древний сопредок – это прапредок всех современных существ.
Можно не сомневаться в том, что предок всех организмов, живущих сейчас на планете, существовал. Все известные науке организмы имеют одинаковый (полностью или частично) генетический код, а он слишком сложен и произволен, чтобы быть изобретенным дважды. Хотя ученые изучили не все виды, у нас уже достаточно данных, чтобы быть вполне уверенными: сюрпризов – увы! – ждать не приходится. Обнаружение некоего организма с принципиально отличным от нашего генетическим кодом стало бы самым потрясающим открытием в биологии за всю мою сознательную жизнь – независимо от того, встретили бы мы этот организм на нашей или иной планете. Однако пока историю известных форм жизни можно проследить до единственного предка, который жил более 3 млрд лет назад. Если где-то и существовали независимые очаги зарождения жизни, они не оставили потомков. А если бы они возникли сейчас, их бы довольно быстро кто-нибудь съел – например бактерии.
Великое слияние всех ныне живущих организмов – это не то же самое, что зарождение жизни. Дело в том, что общий предок всех современных видов, скорее всего, жил уже после зарождения жизни. Иной вариант слишком маловероятен: он предполагает, что исходная форма немедленно разделилась на несколько ветвей, доживших до настоящего времени. В современных учебниках древнейшие бактериальные ископаемые датируются 3,5 млрд лет. Первый живой организм, таким образом, должен быть хотя бы ненамного старше. Новейшие данные указывают на то, что первый живой организм мог быть немного моложе. Последний общий предок всех живущих существ мог либо быть предшественником самых древних окаменелостей (в том случае, если он сам не превратился в окаменелость), либо жить миллиард лет спустя (в том случае, если все линии, кроме одной, вымерли).
Итак, при движении в прошлое мы, независимо от исходной точки, неминуемо придем к великому слиянию. Поэтому мы можем сконцентрироваться на одной-единственной линии – линии наших предков. Вместо того, чтобы считать человека венцом эволюции, мы выберем современного Homo sapiens, к которому питаем вполне понятную симпатию, отправной точкой путешествия в прошлое. Из всех маршрутов мы выбираем этот потому, что нас интересуют собственные предки. В то же время мы не должны забывать, что есть и другие “историки” – животные и растения, – которые отправляются в прошлое из своих стартовых точек. Они организуют паломничества, чтобы встретиться со своими предками, включая общую родню с нами. В пути мы неизбежно встретим этих пилигримов, и они присоединятся к нам в том порядке, в котором их линии сливаются с нашей: в порядке возрастания степени родства.
Паломничество? Встречи с пилигримами? Почему бы и нет! Паломничество – вполне подходящий способ организации путешествия в прошлое. Первые пилигримы, с которыми мы встретимся около 5 млн лет назад в глубине африканского материка (там, где Стэнли обменялся историческим рукопожатием с Ливингстоном), – это шимпанзе. Причем “перед” тем, как присоединиться к нам, пилигримы-шимпанзе и пилигримы-бонобо уже встретились друг с другом. Прежде чем двинуться дальше, я должен разобраться с небольшой лингвистической тонкостью. Я поместил слово “перед” в кавычки, чтобы не вводить вас в заблуждение. Ведь здесь оно используется в контексте путешествия в прошлое. А в прямой хронологии его смысл прямо противоположный: не перед, а после.
Следом мы встретимся с гориллами, орангутанами (встреча с ними случится в гораздо более далеком прошлом и, вероятно, уже не в Африке), гиббонами, обезьянами Старого Света, обезьянами Нового Света и так далее – пока пилигримы не объединятся в группу, которая отправится на поиски истоков жизни. По мере движения в прошлое настанет момент, когда уже не будет смысла называть континенты, где происходят рандеву: древняя карта мира радикально отличалась из-за движения литосферных плит. И, наконец, в самом глубоком прошлом рандеву будут происходить не на суше, а в море.
Это может показаться удивительным, однако на долю людей выпадет лишь около 40 рандеву перед тем, как мы придем в точку зарождения жизни. На каждом из 40 этапов мы встретимся с одним из общих предков – сопредком, который будет носить тот же порядковый номер, что и рандеву. Так, сопредок № 2 (рандеву № 2) является последним общим предком горилл и {людей + <шимпанзе + бонобо>}. Сопредок № 3 – последний общий предок орангутана и {<людей + {шимпанзе + бонобо} > + горилл}. А сопредок № 39 – это великий предок всех ныне живущих существ. Что касается сопредка № о, то это особый случай: он последний общий предок всех современных людей.
По мере движения в прошлое к нам будут присоединяться новые группы пилигримов, которые, в свою очередь, также будут расти на пути к нам. После каждого рандеву мы, вместе с новыми попутчиками, будем продолжать путь к общей цели в архейском времени – к нашему “Кентербери”. Конечно, можно привести и другие литературные аллюзии. Я чуть было не взял за образец Джона Баньяна и не назвал свою книгу “Возвращение пилигрима”. Но я и мой ассистент Янь Вон в беседах постоянно возвращались к “Кентерберийским рассказам”, так что настоящая книга стала отсылкой к Джеффри Чосеру.
В отличие от большинства пилигримов Чосера, мои “пилигримы” отправляются в путь порознь, хотя и в одно время: из сегодняшнего дня. Пилигримы направляются в древний “Кентербери”, к истокам жизни, присоединяясь к нам каждый в свой черед. В этом отношении мои пилигримы не похожи на собравшихся в лондонской харчевне “Табард”. Мои пилигримы скорее напоминают зловещего Каноника и его вероломного Слугу, которые присоединились к пилигримам в Боутон-андер-Блийн, в пяти милях от Кентербери. Как и у Чосера, мои “пилигримы” будут рассказывать истории.
Вообще-то покойники никому ничего не рассказывают, да и вымершим существам, например трилобитам, не полагается быть пилигримами. Но я сделаю два исключения. Животных наподобие дронта, который вымер в историческое время и чья ДНК вполне доступна, мы будем рассматривать как почетных представителей современной фауны. Поскольку мы сами виноваты в вымирании дронтов, мне кажется, это то немногое, что мы можем для них сделать. Другие почетные пилигримы-покойники – люди. Поскольку мы ищем своих предков, окаменелости, которые можно считать кандидатами в предки, тоже будут считаться нашими попутчиками, например человек умелый (Homo habilis).
Мне кажется, не стоит позволять животным и растениям говорить от первого лица. Не считая редких отступлений и вступительных замечаний, пилигримы и у Чосера этого не делают. Многим из “Кентерберийских рассказов” предпослан пролог, а у некоторых есть и эпилог. Все истории пересказывает сам Чосер. Я буду время от времени следовать его примеру.
Чосер предваряет рассказы “Общим прологом”, в котором перечисляет профессии и иногда имена пилигримов, которые отправляются в путь из лондонской харчевни. Я буду представлять вам пилигримов по мере их появления. У Чосера жизнерадостный Трактирщик вызвался проводить пилигримов в Кентербери и попросил их рассказывать истории, чтобы скоротать время. Я же, выступая в роли Хозяина, использую “Общий пролог” для того, чтобы сделать несколько замечаний о реконструкции эволюционной истории.
После пролога мы начнем путешествие во времени. Мы сосредоточимся на поиске собственных предков, а на остальных существ станем обращать внимание лишь в момент встречи с ними. Однако время от времени мы все же будем оглядываться по сторонам. Ориентироваться нам помогут вехи, обозначающие рандеву, а также промежуточные опознавательные знаки. Рандеву примерно соответствуют главам, и в этих пунктах мы сделаем остановки, чтобы осмотреть окрестности и выслушать несколько рассказов. Изредка в мире будет происходить нечто важное, и тогда пилигримы остановятся, чтобы поразмыслить над этим.
Общий пролог
Как изучают минувшее и датируют события прошлого? Историческая наука использует три основных источника, и мы прибегнем к их аналогам, однако в более крупном масштабе – эволюционном. Первый источник – археологические изыскания: изучение костей, наконечников стрел, черепков, кухонных отбросов, статуэток и других предметов, могущих рассказать нам о прошлом. В эволюционной истории самые доступные твердые остатки – это кости, зубы, а также окаменелости. Второй источник – свидетельства о прошлом, которые сами по себе не являются древними, однако содержат копию или отображение чего-то древнего. В истории это письменные или устные сообщения, которые пересказывались, перепечатывались или иным образом копировались. В эволюционной истории на эту роль я предложил бы ДНК, эквивалентную многократно скопированному документу. Третий источник – триангуляция (от метода оценки расстояний с помощью измерения углов). В этом случае нужно взять направление на цель, потом отойти в сторону на измеренное расстояние и снова определить направление на цель. Затем по пересечению двух углов нужно вычислить расстояние до цели. Этот принцип используют некоторые дальномерные фотоаппараты. Кроме того, им традиционно пользуются топографы. Можно сказать, изучающие эволюцию ученые тоже “триангулируют” предка, сравнивая его двух или более живущих потомков. Я рассмотрю три этих источника.
Окаменелости
Трупы или кости вполне могут уцелеть до наших дней – вопреки гиенам, жукам-могильщикам и бактериям. Так, Эци, “ледяной человек” из Тирольских Альп, пролежал во льду 5 тыс. лет. А в янтаре находят забальзамированных насекомых возрастом 100 млн лет. Однако в отсутствие холода или янтаря больше всего шансов сохраниться имеют твердые части организма, например зубы, кости и раковины. Дольше всего хранятся зубы: они должны быть тверже, чем все, чем питается их владелец. Кости и раковины тверды по другим причинам. Твердые части тела, а в редких счастливых случаях и мягкие, иногда превращаются в окаменелости, которые сохраняются сотни миллионов лет. Несмотря на достоинства окаменелостей, мы и без них можем на удивление много узнать об эволюционном прошлом. Если бы все окаменелости вдруг волшебным образом исчезли, мы смогли бы провести сравнительное исследование современных организмов, изучить их сходство, особенно в отношении ДНК, и изучить распределение видов по континентам и островам. И смогли бы снова доказать, что наша история – это история эволюции и что все живые существа являются родственниками друг другу. Окаменелости – просто бонус. Очень приятный, но не обязательный, и об этом стоит помнить, когда креационисты снова заведут речь о “пробелах” в палеонтологической летописи. Даже если летопись была бы одним большим пробелом, доказательства эволюции не стали бы менее убедительными. А если бы у нас были лишь окаменелости и ничего другого, мы все равно смогли бы доказать существование эволюции. Однако нам повезло: у нас есть и то, и другое.
Слово “окаменелость” традиционно используется для обозначения реликта старше 10 тыс. лет. Это не очень разумно: в этом круглом числе нет ничего особенного. Если бы у нас было не десять пальцев, мы считали бы круглыми другие числа. Говоря об окаменелости, мы обычно подразумеваем, что исходный материал образца был заменен или пропитан минералом другого химического состава – то есть получил своего рода свидетельство о смерти. Отпечаток исходной формы может храниться в камне очень долго – возможно, образовав конгломерат с частицами исходного материала. Происходит фоссилизация по-разному. Образование окаменелостей изучает наука тафономия, и мы поговорим об этом в “Рассказе Человека работающего”.
Когда окаменелости впервые нашли и картировали, их возраст был неизвестен. Самое большое, на что мы тогда могли надеяться, – определение их относительного возраста. Его определяют на основе допущения, известного как закон суперпозиции. По очевидным причинам молодые слои залегают над старыми – за исключением особенных случаев. Такие исключения, хотя и могут сначала сбить с толку, обычно довольно очевидны. Например, ледник может переместить старый камень с окаменелостями, и тот окажется поверх молодого слоя. Или геологическое тело с последовательными слоями может перевернуться, и их порядок окажется обратным. Разобраться с такими аномалиями можно, сравнивая эквивалентные породы в разных частях света. Палеонтолог, сложив части головоломки из разных регионов, может получить правдивую последовательность ископаемых. На практике задача несколько осложняется тем, что карта мира менялась (см. “Рассказ Эпиорниса”).
Зачем складывать мозаику? Почему бы просто не копать до нужной глубины и считать, что мы погружаемся вглубь времен? Течение времени, конечно, непрерывно. Но это не значит, что где-то в мире есть последовательность слоев, отложившихся равномерно и непрерывно от начала и до конца некоторого периода геологического времени. Слои окаменелостей откладываются нерегулярно и только тогда, когда для этого есть подходящие условия.
В любом месте и в любое время высока вероятность того, что осадочные породы и окаменелости не образуются. Однако весьма вероятно, что в конкретный период в какой-то части мира окаменелости все-таки образуются. Перемещаясь по миру, палеонтолог может надеяться собрать палеонтологическую летопись почти без разрывов. Конечно, ученые не скачут с одного места раскопок на другое. Чаще они переходят от музея к музею, где изучают образцы в коллекциях, или от полки к полке в университетской библиотеке, читая в журналах описания ископаемых с географической привязкой.
Задача палеонтолога облегчается тем, что слои, обладающие уникальными свойствами и содержащие одни типы ископаемых, встречаются в различных регионах. Девонские отложения (впервые они были описаны как “древний красный песчаник” из английского графства Девон) обнаруживаются в различных областях Британских островов, Германии, Гренландии, Северной Америки и так далее. Породу называют “девонской” не по месту ее обнаружения, а по содержащимся в ней характерным ископаемым – а также частично по свойствам самой породы. Выглядит как логический круг, но на самом деле это скорее похоже на то, как ученый находит среди Кумранских рукописей фрагмент Первой книги Царств. Девонская порода надежно маркирована присутствием характерных для нее ископаемых.
То же касается пород из других эпох, начиная с самых ранних твердых окаменелостей. Все геологические периоды в диаграмме описаны на основании изменений в палеонтологической летописи. Поэтому конец одного периода и начало следующего нередко отмечены массовыми вымираниями, прерывающими ряд окаменелостей. По словам Стивена Джея Гулда, палеонтологу не составит труда определить, относится ли участок породы ко времени до или после массового вымирания в конце пермского периода: типы животных почти не перекрываются. Окаменелости (особенно микроокаменелости) настолько удобны для классификации и датирования пород, что ими часто пользуются нефтяные и горнодобывающие компании.
Таким образом, относительное датирование долго производили путем вертикального сложения кусков “мозаики” скальных пород. В рамках относительного датирования геологическим периодам давали названия. Они употребляются до сих пор. Однако относительное датирование затруднительно для пород с небольшим содержанием окаменелостей – а к таким породам относится все, что старше кембрия, то есть восемь девятых истории Земли.
Абсолютное датирование стало возможным благодаря недавним открытиям в физике, особенно в ядерной (см. “Рассказ Секвойи”). Об этом поговорим позднее, а пока лишь скажу, что в арсенале ученых – целый ряд надежных методов определения абсолютного возраста окаменелости или породы, которая содержит окаменелость.
Методы обладают различной чувствительностью и охватывают диапазон от сотен (годичные кольца) и тысяч лет (углеродный метод) до миллионов, сотен миллионов (урано-ториево-свинцовый метод) и даже миллиардов лет (калий-аргоновый метод).
Письменные источники
Окаменелости, подобно археологическим образцам, являются более или менее прямыми свидетельствами о прошлом. Мы перейдем ко второй категории источников – таким, которые передаются из поколения в поколение. Для историков такими источниками могут стать рассказы очевидцев, переданные изустно либо записанные. Мы не найдем сейчас человека, который рассказал бы нам о жизни в Англии XIV века, однако у нас есть письменные источники, в том числе сочинения Чосера. Они содержат информацию, которую копировали, хранили и распространяли – и которую мы можем изучить сегодня. Рассказ, попавший в печать (в наши дни – носитель цифровой информации), получает шанс на долгую жизнь.
Документы надежнее рассказов. Пожалуй, каждое поколение слушает пространные рассказы родителей и передает их своим детям. И, казалось бы, устные предания сохраняются на протяжении жизни по меньшей мере пяти поколений. Однако я хорошо помню четырех своих бабушек и дедушек, а вот о прабабушках и прадедушках я знаю лишь несколько отрывочных историй. Один прадед часто напевал бессмысленную песенку (я до сих пор могу ее спеть), когда зашнуровывал ботинки. Другой обожал сливки, а проигрывая в шахматы, опрокидывал доску. Третий был сельским врачом. Вот, пожалуй, и все, что мне известно. Вот что осталось от восьми полноценных жизней.
К сожалению, устные предания исчезают почти мгновенно, если только их не пересказывают барды – как те, которые были записаны Гомером (но и в этом случае изложение неточно). Спустя удивительно немного поколений от преданий остаются бессвязные обрывки. Пересказы исторических событий, связанные с героями, преступниками, животными и вулканами, быстро вырождаются (или вырастают, в зависимости от вашего вкуса) в мифы о полубогах, дьяволах, кентаврах и огнедышащих драконах. Однако не будем останавливаться на устных преданиях и их недостатках: у них нет аналога в эволюционной истории.
Письменность – великое достижение. Бумага, папирус, даже каменные скрижали могут быть утрачены, однако документы могут во многих поколениях точно копироваться – хотя точность, конечно, не бывает абсолютной. Я хочу пояснить, что именно подразумеваю под “точностью” и “поколением”. Если вы напишете записку, а я скопирую ее от руки и передам третьему лицу (следующее поколение), эта копия не будет точной: почерк у меня не такой, как у вас. Но если вы напишете аккуратно, а я тщательно скопирую написанные вами буквы, копия может стать абсолютно точной. Теоретически такая точность может сохраняться в течение неопределенного числа поколений. При условии, что автор и читатель пользуются одним алфавитом, копирование позволяет сохранить сообщение даже после утраты его оригинала. Это свойство письма можно назвать самоупорядочиванием. Оно существует благодаря тому, что буквы дискретны. Это утверждение, напоминающее о разнице между аналоговыми и цифровыми кодами, требует объяснения.
Есть промежуточный звук между английскими твердым с и g (во французском – твердое с, как в comme). Но никому не приходит в голову на письме обозначать этот звук буквой-гибридом c и g. Мы понимаем, что каждая буква в английском языке должна быть представлена лишь одним членом 26-буквенного алфавита. Мы знаем, что французы пользуются теми же 26 буквами для звуков, которые не совпадают с английскими и могут представлять собой сочетания звуков английской речи. В каждом языке и диалекте алфавит используется по-своему для самоупорядочивания звуков.
Самоупорядочивание позволяет избежать эффекта испорченного телефона. В случае рисунков, которые копируют художники, этот эффект не работает, если только сам рисунок не следует определенным традициям, выполняющим функцию самоупорядочивания. Записи очевидца события, в отличие от рисунков, имеют все шансы быть точно воспроизведенными в исторических книгах несколько столетий спустя. Мы располагаем, вероятно, вполне точным отчетом о гибели Помпеи в 79 году, потому что очевидец, Плиний Младший, описал увиденное в своих двух посланиях Тациту, а некоторые из писем Тацита сохранились до наших дней благодаря переписыванию, а впоследствии перепечатыванию. Даже до Гутенберга, когда документы копировались вручную, письменность обладала огромным преимуществом по сравнению с заучиванием и устной передачей.
Многократное копирование является абсолютно точным лишь в теории. Писцы ошибались и иногда даже могли “поправлять” оригинал, записывая то, что, как они думали (разумеется, вполне искренне), имелось в виду. Самый известный пример, указанный немецкими теологами XIX века, – подтасовка событий в Новом Завете с целью согласовать их с пророчествами Ветхого Завета.
Помимо фальсификации, копирование подвержено обычным ошибкам. В любом случае, письменность не может рассказать о событиях до ее изобретения (около 5 тыс. лет назад). Условные обозначения, счетная символика и рисунки немного старше: возможно, им несколько десятков тысяч лет. Однако такие промежутки – пустяки в масштабе эволюционного времени.
К счастью, в отношении эволюции мы располагаем иной воспроизводимой информацией, которая претерпела невообразимо большое число случаев копирования и которую, позволив себе небольшую поэтическую вольность, мы можем расценивать как аналог письменного текста. Эти исторические записи с поразительной точностью воспроизводились сотни миллионов раз благодаря тому, что в их основе, как и в основе письменности, лежит самоупорядочивающийся алфавит. Информация ДНК передается с потрясающей точностью. Отдельные атомы в ней непрерывно меняются, однако информация, которую они кодируют, копируется в течение миллионов, даже сотен миллионов лет. Эти записи мы можем прочитать, используя возможности современной молекулярной биологии: она позволяет выявить последовательность “букв” ДНК или последовательность аминокислот белка, которую кодирует ДНК. Или, в еще более косвенном методе, как бы через тусклое стекло, мы можем рассмотреть эти записи, изучая эмбриологические “продукты” ДНК: форма тела, органы, их взаимное расположение. Мы не нуждаемся в ископаемых, чтобы заглянуть в прошлое. Поскольку ДНК меняется очень медленно, история как бы впечатана в тела современных животных и растений.
Сообщения ДНК записаны с помощью настоящего алфавита. Как и римское, греческое или кириллическое письмо, “алфавит” ДНК представляет собой набор символов. Ни один символ сам по себе не имеет смысла, однако из них можно составлять осмысленные сообщения неограниченной сложности и длины. В английском алфавите 26 букв, в греческом – 24, в “алфавите” ДНК – всего четыре. В ДНК используются трехбуквенные “слова” из словаря, ограниченного 64 “словами” – кодонами. Некоторые кодоны являются синонимами, поэтому говорят, что генетический код является вырожденным.
Шестьдесят четыре “слова” соответствуют 21 значению: 20 аминокислот плюс универсальный “знак препинания”. Человеческие языки многочисленны и изменчивы, и в наших словарях десятки тысяч слов. “Словарь” ДНК универсален и консервативен (в очень редких случаях наблюдаются незначительные вариации). Двадцать аминокислот образуют последовательности, обычно из нескольких сотен “слов”, которые определяют последовательность молекул белка. И хотя число “букв” ограничено четырьмя, а число кодонов – 64, число белков, которые можно записать с помощью последовательностей кодонов, неограниченно. Подсчитать их невозможно. “Предложение” из кодонов, определяющих одну молекулу белка, образует опознаваемую единицу, которую называют геном. Гены не отделяются от своих соседей (будь то другие гены или бессмысленные повторы) какими-либо разделителями, кроме содержащихся в их последовательностях. В этом отношении они напоминают ТЕЛЕГРАММЫ ЗПТ В КОТОРЫХ ВМЕСТО ЗНАКОВ ПРЕПИНАНИЯ СЛОВА ЗПТ ХОТЯ И В ТЕЛЕГРАММАХ ЕСТЬ ПРОБЕЛЫ МЕЖДУ СЛОВАМИ ЗПТ КОТОРЫХ НЕТ В ДНК ТЧК.
ДНК отличается от письменного языка тем, что в ней “островки смысла” разделяет море бессмысленных последовательностей, которые не транскрибируются. В ходе транскрипции “целые” гены собираются из осмысленных экзонов, разделенных бессмысленными интронами, последовательность которых при считывании пропускается. И даже “значащие” участки ДНК во многих случаях не считываются. Предположительно они представляют собой уже не нужные копии некогда использовавшихся генов, которые остались в ДНК, как черновики на жестком диске. Мы еще вернемся к сравнению генома с жестким диском, нуждающимся в чистке.
Итак, молекулы ДНК погибших животных не сохраняются. Вечно может храниться лишь информация в ДНК – благодаря непрерывному многократному копированию. Сюжет фильма “Парк юрского периода”, хотя и довольно разумный, все же расходится с фактами. Теоретически недолгое время после попадания в янтарь кровососущее насекомое может сохранять “инструкции” ДНК по воссозданию динозавра. Но, к сожалению, после смерти организма ДНК в его теле и в крови, которой он питался, может храниться в неповрежденном виде всего несколько лет – а в некоторых мягких тканях и вовсе дней. ДНК не убережет и фоссилизация.
Даже глубокое замораживание сохраняет ДНК лишь ненадолго. Пока я пишу эту книгу, ученые выкапывают мамонта из сибирской вечной мерзлоты в надежде на то, что сумеют выделить ДНК в количестве, достаточном для клонирования в матке слонихи. Однако, боюсь, это тщетная надежда – несмотря на то, что мамонт умер всего несколько тысяч лет назад. К самым древним останкам, из которых можно выделить читаемую ДНК, относятся останки неандертальца. Вообразите, какая шумиха поднимется, если кто-нибудь сумеет его клонировать. Но, к несчастью, ДНК возрастом 30 тыс. лет можно восстановить лишь фрагментарно. Для растений, сохранившихся в вечной мерзлоте, рекорд составляет около 400 тыс. лет.
Важная особенность ДНК заключается в том, что, пока цепь жизни не прервется, закодированная в ДНК информация будет копироваться в новой молекуле еще до разрушения старой. Поэтому информация живет гораздо дольше молекул. Она возобновляется посредством копирования, а поскольку копирование для большинства “букв” является точным, теоретически она может сохраняться неопределенно долго. Значительная доля информации ДНК наших предков дошла до нас в неизменном виде, пережив в некоторых случаях сотни миллионов лет.
Таким образом, информация в ДНК – невероятно щедрый подарок, который природа преподнесла историкам. Какой историк мог надеяться, что каждая особь каждого вида носит в теле подробный документ! Более того, в этом тексте происходят незначительные случайные изменения, которые достаточно редки, чтобы не нарушить точность документа, но при этом достаточно часты, чтобы создать метки. Но и это еще не все! Текст не произволен. В книге “Расплетая радугу” я объяснял, почему с точки зрения эволюции ДНК животного можно считать “генетической ‘Книгой Мертвых’”. Из теории эволюции следует, что признаки любого животного или растения – его морфология, наследственное поведение, химия его клеток – представляют собой закодированные сообщения о мире, в котором жили его предки: о пище, которой они питались, о хищниках, от которых убегали, о климате, в котором они жили, о партнерах, с которыми спаривались. Это сообщение записано в ДНК, которая проходит ряд фильтров естественного отбора. Когда мы научимся читать эти сообщения, ДНК дельфина, возможно, однажды подтвердит то, что мы уже знаем из его анатомии и физиологии: что его предки жили на суше. Около 300 млн лет назад предки наземных позвоночных животных (включая предков дельфинов) вышли из моря, где они обитали с начала времен. В ДНК, несомненно, это записано – нужно лишь уметь читать. Все признаки современного животного (ДНК, а также конечности и сердце, мозг и цикл размножения) можно считать архивом, даже если это многократно переписанный палимпсест.
“Хроника” ДНК – подарок для историка. Однако прочитать ее непросто, а интерпретация требует глубоких знаний. Для надежности информацию ДНК можно сочетать с третьим методом исторической реконструкции – триангуляцией.
Триангуляция
Лингвистам часто бывает необходимо восстановить историю языков. В тех случаях, когда сохранились письменные источники, это довольно просто. Специалист по исторической лингвистике может использовать второй из методов реконструкции, изучая “биографию” слов. Современный английский язык эволюционировал из древнеанглийского языка через среднеанглийский, и его историю можно проследить с помощью непрерывной литературной традиции, включающей сочинения Шекспира и Чосера, а также “Беовульф”. Однако ясно, что речь возникла раньше, чем письменность (а у многих языков и сейчас нет письменной формы). Для изучения ранней истории мертвых языков лингвисты используют вариант метода, который я называю триангуляцией. Они сравнивают современные языки и объединяют их в группы в составе семей. Романская, германская, славянская, кельтская языковые группы объединяются с некоторыми другими в индоевропейскую языковую семью. Лингвисты считают, что праиндоев-ропейский был настоящим языком, на котором говорило конкретное племя около 6 тыс. лет назад, и даже надеются реконструировать этот язык, экстраполируя в прошлое сходные особенности языков-потомков. Таким же образом реконструирована история других языковых семей, например алтайской, дравидийской и уральской. Некоторые оптимистичные (и склонные к полемике) лингвисты идут еще дальше, объединяя языковые семьи, и считают, что могут реконструировать элементы гипотетического праязыка, на котором люди якобы говорили 12–15 тыс. лет назад.
Многие лингвисты, соглашаясь с идеей индоевропейского и других праязыков того же ранга, сомневаются в возможности реконструкции праностратического языка. Скептицизм этих профессионалов укрепляет мое собственное любительское недоверие. Однако не стоит сомневаться, что аналогичные методы триангуляции – различные техники, основанные на сравнении современных организмов – работают в отношении эволюционной истории. Даже если бы в нашем распоряжении не было окаменелостей, сравнение современных животных на различных уровнях позволило бы достоверно реконструировать их предков. Подобно тому, как лингвист реконструирует индоевропейский праязык на основе живых и мертвых языков, мы можем реконструировать предков, сравнивая внешние черты, белки или последовательности ДНК современных организмов. Поскольку в научных библиотеках накапливается все больше последовательностей ДНК современных видов, надежность метода триангуляции постоянно возрастает – особенно благодаря тому, что “тексты” ДНК имеют широкий диапазон перекрывания.
Даже у очень дальних родственников, например людей и бактерий, большие участки ДНК однозначно похожи друг на друга. У более близких родственников, например людей и шимпанзе, доля общей ДНК гораздо больше. Если правильно выбирать молекулы для сравнения, можно получить полный спектр постепенно возрастающих пропорций общей ДНК для всех случаев между этими двумя крайностями. При этом можно выбирать молекулы, охватывающие весь диапазон, начиная с далеких родственников, например людей и бактерий, и заканчивая такими близкими родственниками, как два вида лягушек. Сходство языков распознать труднее, за исключением близких языков вроде немецкого и голландского. Цепь рассуждений, которая приводит некоторых оптимистов к праязыку, слишком неубедительна, и поэтому многие лингвисты относятся к этой идее со скепсисом. Не будет ли триангуляция для ДНК людей и бактерий аналогичной триангуляции для праязыка? Нет. Некоторые гены людей и бактерий почти не изменились со времен общего предка – аналога праязыка. Да и сам генетический код всех видов практически идентичен и поэтому должен быть таким же у общих предков. Можно сказать, сходство немецкого и голландского языков сопоставимо со сходством любой пары видов млекопитающих. У человека и шимпанзе ДНК настолько схожа, что эти виды можно сравнить с двумя несильно различающимися диалектами английского языка. А вот сходство между английским и японским языком, или между испанским и баскским, настолько незначительно, что в виде аналогии нельзя привести не только людей и бактерий, но ни одну другую пару организмов. В ДНК людей и бактерий “слово в слово” совпадают иногда целые “абзацы”.
Я упоминал об использовании последовательностей ДНК в методе триангуляции. Теоретически он применим и к обычным морфологическим признакам, однако в отсутствие молекулярных данных далекие предки столь же неуловимы, как праязык. В случае морфологических признаков, как и в случае ДНК, мы предполагаем, что признаки, характерные для многих потомков одного предка, были с высокой вероятностью унаследованы от этого предка (по крайней мере, с более высокой вероятностью унаследованы, чем нет). У всех позвоночных животных есть хорда, и мы предполагаем, что они унаследовали ее (то есть гены, необходимые для ее формирования) от предка, который жил, если судить по окаменелостям, более 500 млн лет назад. Именно этот вариант морфологической триангуляции использовался в книге для реконструкции облика сопредков. Правда, я предпочел бы полагаться в основном на триангуляцию, основанную на ДНК. Но нашей способности предсказывать, как изменение в гене отразится на морфологии организма, для этого недостаточно.
Триангуляция окажется еще эффективнее, если мы рассмотрим много видов. Но для этого нужны сложные методы, которые требуют точных генеалогических схем. Об этих методах мы поговорим в “Рассказе Гиббона”. Триангуляция также позволяет вычислять дату любой эволюционной точки разветвления. Это так называемые молекулярные часы: мы подсчитываем различия молекулярных последовательностей современных видов. У близких родственников с недавно жившими общими предками различий меньше, чем у дальних родственников, а возраст общего предка должен быть (по крайней мере, мы на это надеемся) пропорциональным количеству молекулярных различий у двух его потомков. Затем мы калибруем произвольную временную шкалу “молекулярных часов”, переводя ее в годы. Для этого мы накладываем окаменелости известного возраста на несколько ключевых точек ветвления, для которых такие окаменелости доступны. Это не так просто, и о трудностях мы поговорим в “Эпилоге к рассказу Онихофоры”.
Чосер знакомил своих читателей с пилигримами по порядку. Мой список “паломников” слишком велик, и моя книга – череда знакомств, происходящих в 40 пунктах рандеву. Мне придется вкратце представить “пилигримов”. Дело в том, что персонажи Чосера были личностями, а мои представляют собой группы. И я хочу познакомить вас с принципом, по которому мы группируем животных и растения. Так, во время рандеву № 10 к нашему путешествию присоединяются около 2 тыс. видов грызунов и 87 видов зайцеобразных (кроликов, зайцев и пищух), которые образуют группу грызунообразные. Виды иерархически сгруппированы, и у каждой группы есть название (семейство мышеподобных грызунов называется Mundae, а семейство грызунов, похожих на белку – Sciuridae). Каждый уровень также имеет свое название. Muridae и Sciuridae – семейства. Грызуны (Rodentia) – это отряд, к которому принадлежат указанные семейства. Грызунообразные (Glires) – надотряд, объединяющий грызунов и зайцеобразных. Такие названия расположены в иерархическом порядке: семейства и отряды где-то посередине, вид – у самого основания иерархии. Мы движемся от родов к семействам, отрядам, классам и типам, используя приставки вроде под- и над- для обозначения промежуточных категорий.
Категория вида, как мы увидим, имеет особый статус. У каждого вида есть уникальное название, состоящее из названия рода и названия вида. Оба слова записываются курсивом. Например, леопард, лев и тигр относятся к роду Panthera и называются соответственно Panthera pardus, Panthera leo и Panthera tigris. Их причисляют к семейству кошачьи (Felidae), которое, в свою очередь, относится к отряду хищные (Carnivora), классу млекопитающие (Mammalia), подтипу позвоночные (Vertebrata) и типу хордовые (Chordata). Позднее мы вернемся к разговору о принципах систематики.
Паломничество начинается
Пришло время начать паломничество в поисках предков. Точнее (почему – станет ясно из “Рассказа Неандертальца”) – в поисках предковых генов. Первые несколько десятков тысяч лет путешествия предковые гены будут принадлежать людям, выглядевшим так же, как мы. Не буквально так же, конечно: все мы выглядим по-разному. Первые несколько десятков тысяч лет паломничества все люди, которых мы встретим, выходя из машины времени, будут отличаться от нас не сильнее, чем мы отличаемся друг от друга: немцы, зулусы, пигмеи, китайцы, берберы, меланезийцы и так далее. Наши генетические предки, жившие 50 тыс. лет назад, находятся в пределах того же диапазона изменчивости, который мы наблюдаем сейчас.
Какие изменения (если не считать биологической эволюции) мы увидим десятки тысяч лет назад? Чем увиденное будет отличаться от картины, которую мы наблюдали бы сотни или миллионы тысячелетий назад? Существует похожий на эволюцию процесс, на порядки более быстрый, чем биологическая эволюция, и его мы в основном будем наблюдать из иллюминатора на ранних этапах нашего путешествия. Этот процесс называют культурным развитием, экзосоматической эволюцией, технической эволюцией. Мы наблюдаем его в “эволюции” автомобиля, галстука, английского языка. Не стоит переоценивать его сходство с биологической эволюцией. В любом случае, он ненадолго задержит наше внимание. Нам предстоит дорога в 4 млрд лет, и машина времени полетит с такой скоростью, что мы успеем бросить лишь мимолетный взгляд на историю человечества.
И, пока машина времени движется на первой скорости (перемещаясь по временной шкале человеческой истории), мы послушаем рассказы о главных культурных достижениях человечества. “Рассказ Земледельца” – это история аграрной революции: человеческого изобретения, которое имело, пожалуй, самые серьезные последствия для других организмов. А “Рассказ Кроманьонца” повествует о “большом скачке”, который в определенном смысле дал новую среду самой эволюции.
Рассказ Земледельца
Аграрная революция началась около 10 тыс. лет назад, на исходе последнего ледникового периода, между Тигром и Евфратом – в регионе, прозванном “плодородным полумесяцем”. Другие очаги земледелия возникли (скорее всего, независимо) в Китае, долине Нила и (совершенно независимо) в Новом Свете. Стоит указать еще одну колыбель земледельческой цивилизации – труднодоступные горы Новой Гвинеи. С аграрной революции начинается новый каменный век, или неолит.
С переходом от кочевого образа жизни, охоты и собирательства к оседлости и земледелию у людей, возможно, появилось понятие дома. При этом общины охотников-собирателей (к охотникам можно причислить рыболовов) не исчезли. В некоторых уголках мира люди живут так до сих пор: австралийские аборигены, племя сан и родственные ему южноафриканские племена (которые ошибочно называют бушменами), аборигены Америки (названные индейцами в результате ошибки навигации) и инуиты (которые не любят, когда их называют эскимосами) в Арктике. Налицо практически все переходные звенья между охотниками-собирателями и земледельцами и пастухами. Но скоро, судя по всему, охотников-собирателей вовсе не останется. Те из них, кто не вымрут, станут “цивилизованными” (или “испорченными” – как вам больше нравится).
Колин Тадж в книге “Неандертальцы, бандиты и крестьяне: как на самом деле возникло земледелие” соглашается с автором “Третьего шимпанзе” Джаредом Даймондом в том, что переход от охоты и собирательства к земледелию никоим образом не был усовершенствованием. По мнению указанных авторов, аграрная революция не принесла человеку счастье. Земледелие может обеспечивать существование популяций, превышающих по численности популяции охотников-собирателей, однако представители этих популяций не обязательно будут здоровее или счастливее. Ведь крупные поселения, как правило, становятся рассадниками болезней, и на то есть веские эволюционные причины (в крупной популяции паразит не желает долгой жизни своему хозяину, поскольку легко может найти нового).
Общество охотников-собирателей нельзя назвать утопией. В последнее время стало модно говорить, что охотники, собиратели и примитивные земледельческие общества живут в “гармонии” с природой. Думаю, это ошибка. Вполне возможно, они больше знали о дикой природе – просто потому, что жили и выживали в ней. Однако, как и мы, они наверняка по мере скромных сил использовали эти знания для эксплуатации (нередко – избыточной) окружающей среды. Даймонд указывает на избыточную эксплуатацию ресурсов древними земледельцами. Это разрушило экосистемы и привело их общества к упадку. Охотники-собиратели никогда не жили в “гармонии с природой”, и, вполне вероятно, именно они виновны в массовом вымирании многих крупных животных по всему миру. В период, непосредственно предшествовавший аграрной революции, освоению отдаленных областей охотниками-собирателями в палеонтологической летописи подозрительно часто сопутствует вымирание крупных и, по-видимому, вкусных млекопитающих и птиц.
Мы склонны все “городское” противопоставлять “сельскому”. Однако в долгосрочной перспективе горожан стоило бы объединить с земледельцами и противопоставить их всех охотникам-собирателям. Ведь город получает провиант в основном из сельских районов. Сельскохозяйственные угодья некогда окружали городские стены, а сейчас они разбросаны по всему миру, и продовольствие поступает к потребителям через посредников. Аграрная революция быстро привела к разделению труда. Гончары, ткачи и кузнецы стали обменивать свои изделия на продовольствие, которое производили другие.
К добру ли, к худу ли были эти перемены – неизвестно. Аграрная революция, по-видимому, не стала внезапной, и хлебопашество не было озарением, постигшим некоего неолитического гения – собрата “турнепсового” Таунсенда. Сначала люди, охотившиеся на диких животных на никому не принадлежавших территориях, возможно, охраняли свои охотничьи угодья от конкурентов. Или же могли просто охранять стада, следуя за ними. Отсюда естественным образом возник выпас скота, затем содержание и, наконец, одомашнивание. Осмелюсь предположить, что эти перемены вовсе не казались их современникам революционными.
Тем временем эволюционировали и сами животные, “одомашниваясь” под воздействием примитивных форм искусственного отбора. Последствия дарвиновского отбора у животных проявлялись постепенно. Наши предки, не имевшие осознанного желания вывести новые породы домашних животных, меняли направление отбора, и тот уже не поощрял умение быстро бегать и другие навыки выживания в дикой природе. Со сменой поколений домашние животные становились все более пассивными и менее способными постоять за себя, приобретая взамен склонность к росту и накоплению жира. Здесь возникает соблазн привести параллель с социальными насекомыми, например муравьями или термитами, которые “одомашнивают” тлей (“скот”) и грибы (“сельскохозяйственные культуры”). Мы еще услышим об этом в “Рассказе Муравья-листореза” (см. рандеву № 26).
В отличие от современных селекционеров, пионеры аграрной революции проводили искусственный отбор растений и животных по желаемым признакам, не отдавая себе в том отчета. Вряд ли они понимали, что для увеличения удоев нужно скрестить высокоудойных коров с быками, рожденными от других высокоудойных коров, а телят, родившихся от низкоудойных коров, отбраковать. Некоторое представление о случайных генетических последствиях одомашнивания дает интересный эксперимент с черно-бурыми лисицами.
Советский генетик Дмитрий Беляев с коллегами содержал в неволе черно-бурых лисиц (Vulpes vulpes) и систематически скрещивал их друг с другом, чтобы вывести ручных животных. Селекционеры достигли поразительных успехов. Беляев, выбирая в каждом поколении самых покладистых особей и скрещивая их, за двадцать лет вывел лисиц, которые вели себя как бордер-колли. Они стремились к общению с людьми и виляли хвостом при встрече. Само по себе это не очень удивительно: поразительна быстрота, с которой это произошло. Еще неожиданнее оказались побочные эффекты отбора. Лисицы Беляева стали не только вести себя как колли, но и выглядеть как колли.
У них выросла черно-белая шерсть, а морды и лбы стали белыми. Вместо характерных для диких лис заостренных ушей они обзавелись симпатичными висячими. У лисиц изменился баланс половых гормонов, и они приобрели способность скрещиваться в течение всего года, а не только в определенный сезон. У них обнаружили повышенный уровень серотонина, что, возможно, связано с их пониженной агрессией. Итак, потребовалось всего двадцать лет, чтобы с помощью искусственного отбора превратить лисиц в “собак”.
Я поставил здесь кавычки потому, что домашние собаки не являются потомками лисиц: они происходят от волков. Кстати, известное предположение Конрада Лоренца о том, что от волков произошли лишь некоторые породы собак (его любимые чау-чау, например), а остальные – от шакалов, сейчас считается неверным. Лоренц подкрепил свою теорию поучительными рассказами о темпераменте и поведении. Но молекулярная систематика взяла верх над интуицией: данные недвусмысленно указывают на то, что все современные породы собак происходят от обыкновенного волка (Cams lupus). Следующими ближайшими родственниками собак (и волков) выступают койоты и эфиопские “шакалы” (которых, согласно последним данным, нужно называть эфиопскими волками). Настоящие шакалы (золотистые, с полосатыми боками и черной спиной) тоже принадлежат к роду Canis, однако являются более дальними родственниками.
Ясно, что эволюция собак от волков следовала примерно тому же сценарию, который воспроизвел Беляев – с той лишь разницей, что он приручал лисиц сознательно. По-видимому, это произошло несколько раз в различных регионах. Возможно, изначально волки стали питаться отбросами вокруг стоянок. Люди могли счесть “мусорщиков” полезными, а также увидели в них сторожевых животных или даже теплое одеяло. Этот мирный сценарий кажется удивительным и указывает на то, что средневековая легенда, согласно которой волки рассматриваются как символ древнего страха, возникла вследствие невежества. Наши “дикие” предки, жившие на открытых пространствах, такое не сочинили бы.
С точки зрения волка, стоянки человека были хороши тем, что здесь можно было поживиться отбросами. В выигрыше оказывались особи, уровень серотонина у которых, наряду с другими особенностями мозга (“склонность к приручению”), позволял им чувствовать себя непринужденно в присутствии людей. Некоторые авторы предлагали довольно правдоподобную теорию о осиротевших волчатах, которых дети забирали себе в качестве домашних животных. Эксперименты показали, что домашние собаки лучше, чем волки, умеют “читать” выражение лица человека. Это, по-видимому, случайное следствие того, что в течение многих поколений они эволюционировали бок о бок с нами. Мы, в свою очередь, умеем читать выражение собачьих морд, причем у собак в результате непреднамеренного отбора выражение морды гораздо сильнее похоже на человеческое, чем у волков. Видимо, поэтому нам кажется, что волки выглядят “зловещими”, а собаки – “дружелюбными”, “виноватыми”, “милыми” и так далее.
Можно провести параллель с японскими крабами. На спине этих крабов – рисунок, напоминающий лицо воина. Теория Дарвина объясняет этот казус так: суеверные рыбаки выбрасывали обратно в море крабов, напоминавших им самураев. Поколение за поколением гены, отвечающие за похожий на человеческое лицо рисунок, с высокой вероятностью выживали в телах крабов, и постепенно частота таких генов увеличивалась в популяции, пока не стала такой, как сейчас. Правда это или нет, неизвестно, но в процессе эволюции настоящих домашних животных происходило подобное.
Вернемся к эксперименту Беляева с лисами. Он демонстрирует высокую скорость, с которой может идти одомашнивание, и высокую вероятность того, что приручению вначале сопутствует целый ряд побочных эффектов. Возможно, коровы, свиньи, лошади, овцы, козы, куры, гуси, утки и верблюды также прошли путь, который был не менее короток и так же богат неожиданными побочными эффектами. Возможно также, что мы и сами после аграрной революции пошли по параллельному пути приручения, что привело нас к “одомашенности” и связанным с ней чертам.
В некоторых случаях историю нашего собственного одомашнивания можно проследить по генам. Хрестоматийный пример (см. книгу “Коэволюция” Уильяма Дарэма) – переносимость лактозы. Молоко – пища младенцев, не “предназначенная” для взрослых и исходно непригодная для них. Для усвоения лактозы – сахара, содержащегося в молоке, – нужен фермент лактаза. (Кстати, стоит запомнить правило: название фермента часто образуется добавлением “-аза” к первой части названия вещества, на которое воздействует этот фермент.) У детенышей млекопитающих кодирующий лактазу ген “выключается” после того, как они достигают возраста естественного отлучения от матери. Сам ген, конечно, не исчезает. “Детские” гены не удаляются из генома – даже у бабочек, у которых большая доля генов используется исключительно для формирования гусеницы. Но у человеческих детенышей выработка лактазы прекращается в возрасте около четырех лет под влиянием других регулирующих генов. От свежего молока взрослым становится нехорошо: симптомы варьируют от вздутия живота и кишечных спазмов до диареи и рвоты.
Всех ли взрослых это касается? Нет, конечно. Есть исключения – я, например. Мое обобщение относится к человеку в целом и (косвенно) к диким Homo sapiens, от которых мы произошли. Это все равно что я сказал бы: “Волки – это крупные жестокие хищники, которые охотятся стаей и воют на Луну”, – зная при этом, что пекинесы и йоркширские терьеры опровергают данное утверждение. Для обозначения одомашненного волка у нас есть специальный термин – “собака”, а для одомашненного человека – нет. Гены домашних животных изменились за время жизни с людьми. Гены некоторых людей, в свою очередь, изменились вследствие долгого контакта с домашними животными. Переносимость лактозы, судя по всему, появилась далеко не у всех народов. Среди них – тутси из Руанды (в меньшей степени – их извечные враги хуту), скотоводы фульбе из Западной Африки (кроме оседлых фульбе), синдхи из Северной Индии, туареги из Западной Африки, беджа из Северо-Восточной Африки, а также некоторые европейские народы. Все эти племена объединяет скотоводческая традиция.
На другом конце спектра находятся народы, сохранившие естественную непереносимость лактозы у взрослых. К ним относятся китайцы, японцы, инуиты, большинство индейцев, яванцы, фиджийцы, австралийские аборигены, иранцы, ливанцы, турки, тамилы, сингальцы, тунисцы и множество африканских племен (сан, тсвана, зулу, коса и свази – на юге материка, динка и нуэр – на севере, йоруба и игбо – на западе, и так далее). В прошлом эти народы, представители которых не переносят лактозу, как правило, не занимались скотоводством. Однако есть и любопытные исключения. Традиционная диета масаев (Восточная Африка) включает в основном молоко и кровь, и можно сделать вывод, что они хорошо переносят лактозу. Однако это не так – вероятно потому, что перед употреблением они створаживают молоко. Как и в процессе приготовления сыра, большая часть лактозы удаляется бактериями. Отказаться от продукта – первый способ избавиться от нежелательных последствий для здоровья. Второй способ – поменять гены. Именно это произошло с указанными скотоводческими народами.
Разумеется, никто не может намеренно менять свои гены. Наука лишь сейчас начинает понимать, как это сделать. Как обычно, за нас все сделал естественный отбор – много тысяч лет назад. Я точно не знаю, как естественный отбор привел к переносимости лактозы у взрослых. Возможно, взрослые в голодные времена принимали детскую пищу, и те, кто лучше переносил такую пищу, чаще выживали. Возможно, в некоторых культурах детей поздно отнимали от груди, и отбор на выживание детей привел к переносимости у взрослых. Как бы то ни было, изменения, хоть и генетические, были вызваны культурой. Постепенное одомашнивание и рост удоев у коров, овец и коз шли параллельно с эволюцией переносимости лактозы у племен, которые пасли коров, овец и коз. В обоих случаях изменения были по-настоящему эволюционными, потому что затрагивали частоту генов в популяциях.
Возможно, переносимость лактозы – лишь вершина айсберга? Возможно, наши геномы полны доказательств одомашнивания, которые касаются не только нашей биохимии, но и нашей психики? Стали ли мы сами, подобно лисам Беляева или прирученным волкам, которых мы называем собаками, “ручными”, “милыми”, приобрели ли человеческие аналоги висячих ушей, трогательных мордочек и виляющих хвостов? Оставлю вас поразмышлять над этим – и поспешу дальше.
В то время как охота постепенно сменилась выпасом животных, собирательство, судя по всему, примерно таким же образом превратилось в возделывание. Произошло это, скорее всего, непреднамеренно. Конечно, случались и озарения – например, когда люди впервые заметили, что если опустить семена в землю, из них вырастут такие же растения, как и те, с которых эти семена собрали. Или когда кто-то заметил, что растения лучше растут, если их полить, прополоть и удобрить. Наверное, немного труднее было додуматься лучшие семена оставлять на посев, а не съедать их. (В 40-х годах мой отец, тогда молодой специалист, учил крестьян в Центральной Африке агрономии. Он рассказывал, что это понять им было труднее всего.) Но в целом собиратель превратился в земледельца незаметно для себя – как и охотник в пастуха.
Многие из наших зерновых культур (пшеница, овес, ячмень, рожь, кукуруза и так далее) относятся к семейству злаки, которые сильно изменились в результате отбора, производимого человеком, – сначала непреднамеренного, позднее сознательного. Возможно, мы сами за тысячелетия генетически изменились, научившись усваивать хлебные злаки, а также молоко. До аграрной революции в нашем рационе почти не было содержащих крахмал злаков, подобных пшенице и овсу. В отличие от апельсинов и земляники, семена зерновых культур “не хотят” быть съеденными. Стратегия распространения таких семян не требует прохождения через пищеварительный тракт животного, в отличие от семян томатов или слив. Что касается нас самих, то пищеварительный тракт человека не в состоянии самостоятельно переварить большое количество семян злаков, которые содержат мало крахмала и имеют твердую шелуху. Отчасти тут помогает перемалывание и кулинарная обработка, но вполне вероятно и то, что параллельно с переносимостью молока у нас могла появиться и повышенная, по сравнению с нашими дикими предками, физиологическая переносимость пшеницы. Непереносимость пшеницы – проблема довольно многих людей. Было бы любопытно сравнить распространенность непереносимости пшеницы у охотников-собирателей, например сан, и других народов, чьи предки-земледельцы уже давно едят пшеницу. Но если и существует масштабное сравнительное исследование переносимости пшеницы наподобие того, которое провели по поводу переносимости лактозы, я о нем не знаю. Было бы также интересно провести сравнительное исследование непереносимости алкоголя. Ведь известно, что при наличии определенных аллелей печень расщепляет алкоголь хуже, чем нам бы хотелось.
Так или иначе, в коэволюции животных и их растительной пищи не было ничего нового. Травоядные способствовали своего рода благоприятствующему отбору злаков, направляя их эволюцию в сторону симбиотического сотрудничества за миллионы лет до того, как мы начали одомашнивать пшеницу, ячмень, овес, рожь и кукурузу. В присутствии травоядных животных злаки процветают, и вероятно, именно это они делали 20 млн лет – с момента появления их пыльцы в палеонтологической летописи. Конечно, отдельные растения не получают выгоды, когда их съедают, но такие злаки могут быть устойчивее к ощипыванию и обкусыванию, чем конкуренты. Враг моего врага – мой друг, и злаки, даже будучи ощипанными, пышно разрастаются, когда травоядные поедают (наряду с самими злаками) другие растения, которые иначе конкурировали бы с ними за почву, солнце и воду. Шли тысячелетия, и травы учились уживаться с рогатым скотом, антилопами, лошадьми и другими травоядными (а в итоге – и газонокосилками). Травоядные тоже совершенствовались, приобретая специализированные зубы и сложные пищеварительные системы, которые стали включать отделы для ферментации с поселившимися там культурами особых микроорганизмов, помогавшими выживать на злаковой диете.
Это не совсем то, что мы обычно подразумеваем под одомашниванием, но фактически это оно и есть. Около 10 тыс. лет назад, когда дикие злаки рода Triticum были одомашнены и превратились в пшеницу, это стало в некотором смысле продолжением того, что различные виды травоядных животных 20 млн лет проделывали с предками Triticum. Наши предки ускорили этот процесс, особенно когда (много позднее) они перешли от спонтанного одомашнивания к обдуманной, планомерной селекции (а совсем недавно – и к научной гибридизации и генетическим манипуляциям).
Вот и все, что я хочу сказать о происхождении земледелия. Теперь, когда наша машина времени минует отметку в 10 тыс. лет и направляется на рандеву № о, мы ненадолго остановимся на отметке около 40 тыс. лет назад. Здесь с обществом охотников-собирателей произошла, вероятно, еще более разительная перемена, чем аграрная революция: случился Большой культурный скачок.
Об этом нам расскажет кроманьонец, названный так в честь пещеры во Франции, в Дордони, где впервые обнаружили окаменелости этой расы Homo sapiens.
Рассказ Кроманьонца
Около 40 тыс. лет назад, как показывают археологические данные, с человеком стало происходить нечто очень интересное. В анатомическом отношении наши предки, жившие до того переломного момента, были такими же, как и появившиеся на свет после него. Они отличались от нас не сильнее, чем от своих современников из других регионов, и, безусловно, не сильнее, нежели мы отличаемся от наших современников. В культурном же отношении заметна огромная разница. Конечно, и в наши дни культуры сильно отличаются друг от друга. Тогда, вероятно, было так же. Но все меняется, если двинуться за отметку 40 тыс. лет. Что-то произошло – и, по мнению многих археологов, достаточно неожиданно для того, чтобы назвать произошедшее “событием”. Мне нравится название, которое дал ему Джаред Даймонд: Большой скачок.
Почти все артефакты до Большого скачка, дошедшие до нас, – это каменные инструменты и оружие, довольно грубые. Несомненно, древесина (в Азии – бамбук) обрабатывалась чаще, но деревянные предметы сохраняются не так хорошо. Насколько мы можем судить, тогда не существовало рисунков, статуэток, погребального инвентаря, украшений. Но после Скачка все эти предметы внезапно возникают в археологической летописи – наряду с музыкальными инструментами вроде костяных флейт. Это произошло незадолго до создания кроманьонцами (см. вкладку) в пещере Ласко великолепных росписей. Беспристрастный наблюдатель с другой планеты пришел бы к выводу, что современная культура с ее компьютерами, сверхзвуковыми самолетами и исследованием космоса – лишь последствие Большого скачка. На длинной геологической временной шкале наши достижения – от Сикстинской капеллы до специальной теории относительности, от вариаций Гольдберга до гипотезы Гольдбаха – окажутся почти там же, где и Венера Виллендорфская и росписи Ласко. Все они – составляющие одной культурной революции, внезапного всплеска, который последовал за долгим застоем нижнего палеолита. На самом деле я совсем не уверен, что такой взгляд нашего инопланетного наблюдателя смог бы выстоять против фактов, но право на существование он точно имел бы. В книге “Разум в пещере” Дэвида Льюиса-Уильямса рассматривается связь наскальной живописи верхнего палеолита и пробуждения сознания у Homo sapiens.
Некоторые крупные специалисты находятся под таким впечатлением от Большого скачка, что соотносят его с появлением речи. Что еще, спрашивают они, могло быть причиной внезапной перемены? Предположение о внезапном возникновении языка не настолько нелепо. Никто не думает, что письмо существует дольше нескольких тысяч лет, и все признают, что изменения анатомии мозга не совпадают по времени с такими недавними событиями, как изобретение письма. Теоретически речь могла бы стать еще одним примером. Однако мне кажется, что речь старше, чем Скачок, и в этом меня поддерживают авторитетные лингвисты, например Стивен Пинкер. Мы вернемся к этому вопросу через миллион лет, когда встретим H. ergaster (erectus).
Возможно, Большой скачок совпал если не с возникновением речи, то с появлением свежего “программного обеспечения”, например нового грамматического приема (условного придаточного предложения и так далее), благодаря которому у людей открылось воображение. Или, возможно, язык до Скачка подходил лишь для разговора о “здесь и сейчас”, и некий гений вдруг понял, что слова можно соотносить с вещами, которых нет здесь и сейчас. Это разница между фразами “перед нами источник воды” и “представь, что по ту сторону холма источник”. Или, возможно, мостом для перехода к референциальной речи стало изобразительное искусство, почти неизвестное до Скачка. Может быть, сначала люди научились рисовать бизона и лишь потом научились говорить о бизоне, которого нет здесь и сейчас.
Как бы мне ни хотелось задержаться в лихих временах Большого скачка, придется поспешить. Мы приближаемся к пункту, в котором сможем начать поиски сопредка № о – последнего предка ныне живущих людей.
Рандеву № о
Все человечество
Проект “Геном человека” завершен, и его славит гордое человечество. Вполне простительно поинтересоваться, чей именно геном был секвенирован. Был ли удостоен этой чести выдающийся государственный муж? Или случайный прохожий? Или анонимный клон клеток из лабораторной культуры ткани? Это имеет значение, потому что мы разные. У меня карие глаза, а у вас, возможно, голубые. Я не умею сворачивать язык в трубочку, а вы с вероятностью 50 % это умеете. Какая версия гена сворачивания языка в трубочку увековечена в опубликованном геноме человека? Какой цвет глаз стал “каноническим”?
Я поднимаю этот вопрос лишь для того, чтобы провести параллель. В этой книге мы ищем своих предков, но о чьих именно предках мы говорим: о ваших? Или моих? О предках пигмея бамбути или жителя островов Торресова пролива? Скоро я к этому вернусь. Но сначала, раз уж я задал вопрос относительно “Генома человека”, мне придется на него ответить. Чей геном избрали для анализа? Если мы говорим об “официальном” проекте “Геном человека”, то для небольшой части “букв” ДНК, которые различаются у разных людей, “каноническим” стал геном, получивший большинство “голосов” среди нескольких сотен человек, подобранных так, чтобы максимально полно представить расовое многообразие. А в случае альтернативного проекта д-ра Крейга Вентера секвенирванный геном явился главным образом геномом… самого Вентера[1]. Об этом он и объявил, чем привел в тихий ужас комитет по этике, который исходя из важных причин рекомендовал анонимно выбирать доноров среди представителей разных рас. Исследованию собственно генетического разнообразия человека посвящены многие другие проекты, которые, кстати, подвергаются политическим нападкам: как будто есть что-то неприличное в признании того, что люди разные. И слава богу, что разные – пусть и не очень.
Человечество. Это генеалогическое древо не претендует на точность: полное было бы невероятно плотным. Движение вниз по странице соответствует движению в прошлое. Геологический масштаб времени (см. вкладку) указан в столбце справа. Белые линии отображают схемы скрещивания: их много в пределах континентов и меньше – между континентами. Нумерованный кружок внизу обозначает сопредка № о, последнего общего предка всех ныне живущих людей.
Но вернемся к нашему паломничеству. Чьих предков будем искать мы? Если вернуться достаточно далеко в прошлое, у всех отыщутся общие предки. Кем бы вы ни были, ваши предки окажутся моими, а мои – вашими. Это одна из тех истин, которая, если подумать, не нуждается в специальных доказательствах. Доказать ее можно умозрительно, используя математический прием reductio ad absurdum [доведения до абсурда]. Перенесемся в машине времени абсурдно далеко, скажем, на 100 млн лет назад, когда наши предки напоминали землероек или опоссумов. В те давние времена где-то должен был жить по меньшей мере один из моих непосредственных предков – иначе меня не было бы. Назовем это млекопитающее Генри (это традиционное имя в моем роду). Нам нужно доказать, что если Генри – мой предок, то он должен быть и вашим предком. Теперь представьте обратную ситуацию: я – потомок Генри, а вы – нет. В этом случае наши линии должны были идти бок о бок, не пересекаясь, 100 млн лет. Они должны были прийти в одну эволюционную точку – и остаться настолько сходными, что ваши родственники до сих пор способны скрещиваться с моими. Так-то! Если Генри – мой предок, он и ваш предок. А если он не мой предок, то и вашим он быть не может.
Итак, достаточно древний человек, оставивший потомство, есть предок всего человеческого рода. Вопрос о происхождении людей не допускает компромиссов. Более того, вполне возможно, что Генри – мой предок (и, разумеется, ваш – с учетом того, что вы в достаточной мере человек, чтобы прочитать это), а его брат Эрик – предок, скажем, современных трубкозубов. И это не предположение. Это факт: в истории обязательно случалось, что одно из двух животных одного вида стало предком всех людей (но ни одного трубкозуба), а второе стало предком всех трубкозубов (но ни одного человека). Они вполне могли встретиться и, возможно, даже были братьями. Вместо трубкозуба можно указать любой другой современный вид. Подумайте хорошенько: это следует из того факта, что все виды родственны друг другу. При этом не забывайте, что предок всех трубкозубов – одновременно предок множества других животных (в данном случае – большой группы Afrotheria, с которой мы встретимся на рандеву № 13 и в которую входят слоны и дюгони, даманы и мадагаскарские тенреки).
Мое доказательство основано на методе доведения до абсурда. Оно подразумевает, что Генри жил достаточно давно для того, чтобы стало ясно: он породил либо всех людей на земле, либо ни одного. Насколько давним должно быть это “достаточно давно”? Это трудный вопрос. Думаю, 100 млн лет более чем достаточно. Если мы вернемся в прошлое на сто лет, никто не сможет утверждать, что весь человеческий род – его прямые потомки. С крайними значениями вроде ста лет или 100 млн лет все просто. А что можно сказать о промежуточных датах: 10 тыс. лет, 100 тыс. лет, миллион лет? Точные расчеты – не по моей части, и в моей предыдущей книге “Река, текущая из рая” их не было. К счастью, расчеты взял на себя специалист по статистике из Йельского университета Джозеф T. Чан. Полученные им результаты и то, что за ними стоит, легли в основу “Рассказа Тасманийца”, исключительно важного для нынешнего рандеву: сопредок № 0 – последний общий предок современных людей. Для датировки рандеву № 0 придется сделать некоторые расчеты наподобие тех, что произвел Чан.
Именно здесь, на рандеву № 0, мы впервые встречаем общего предка людей. Но, согласно методу доведения до абсурда, еще дальше в прошлом настанет момент, когда любой человек, которого мы встретим, окажется либо нашим общим предком, либо не нашим предком вообще. И хотя на том далеком рубеже нельзя выделить какого-то одного предка, все-таки стоит, проходя мимо, удостоить этих людей кивком, потому что начиная с этого момента мы можем больше не гадать, ваш это предок или мой. Перейдя этот рубеж, все читатели плечом к плечу двинутся в прошлое.
Рассказ Тасманийца[2]
Поиск предков – весьма увлекательное занятие. Как и в исторической науке, есть два метода. Можно двигаться назад, перечисляя сначала родителей, следом бабушек и дедушек, прабабушек и прадедушек и так далее. Или выбрать далекого предка и двигаться вперед во времени, перечисляя его детей, внуков и правнуков – вплоть до себя самого. Генеалоги-любители используют оба метода, пока генеалогическое древо не станет настолько полным, насколько это позволяют метрики и “семейные библии”. Здесь, как и во всей книге, мы прибегнем к ретроспективному подходу.
Возьмем двух случайных людей. Двигаясь от них в прошлое, мы рано или поздно обнаружим их последнего общего предка (ПОП). Вы и я, водопроводчик и королева – любая пара людей обязательно сойдется на одном сопредке (точнее, паре сопредков). Но, если мы не говорим о близких родственниках, поиск сопредка требует построения обширной генеалогической схемы, и большая ее часть останется от нас сокрыта. В первую очередь это касается предка ныне живущих людей. Установление возраста сопредка № о, то есть последнего общего предка современных людей, – не то задание, с которым справится специалист по генеалогии. Это задача для математика.
Прикладная математика пытается познать мир с помощью его упрощенной модели. Она облегчает понимание, не теряя способности отображать реальность. Иногда модель дает нам отправную точку, исходя из которой можно понять действительность.
При построении математической модели для определения геологического возраста общего предка всех живущих людей хорошим упрощением – чем-то вроде игрушечного мира – будет популяция с неизменной численностью, живущая на острове в отсутствие иммиграции или эмиграции. Пусть это будет идеализированная популяция тасманийских аборигенов до XIX века, когда их истребили, будто паразитов, европейские колонисты. Последняя чистокровная тасманийка Труганини умерла в 1876 году, вскоре после своего друга, “короля Билли”, из мошонки которого сделали кисет (здесь стоит вспомнить нацистов и их абажуры). Тасманийские аборигены оказались в изоляции около 13 тыс. лет назад, когда сухопутные “мосты” с Австралией оказались затопленными вследствие глобального поднятия уровня океана. Тасманийцы не знали чужаков, пока в полной мере не испытали их присутствие во время Холокоста XIX века. Для целей моделирования удобнее считать, что Тасмания оставалась изолированной 13 тыс. лет – до 1800 года. Условной “современностью” в пространстве моделирования будем считать 1800 год.
Следующий этап – моделирование принципа образования пар. В реальном мире люди женятся по любви или устраивают браки по расчету. Мы заменим эти милые подробности послушной математикой. Можно придумать несколько моделей образования пар. В стохастической диффузионной модели мужчины и женщины, которые ведут себя как частицы, хаотично распространяющиеся от места своего зарождения, с ближайшими соседями столкнутся с более высокой вероятностью, чем с соседями более далекими. Еще более простая, но менее реалистичная модель – случайное спаривание. Здесь мы забываем о расстоянии и исходим из того, что в пределах острова равновероятно образование пар любыми мужчинами и женщинами.
Конечно, эти модели неправдоподобны. Случайная диффузия предполагает, что люди от исходной точки расходятся во всех направлениях. В реальности их пути определяются дорогами – узкими ручейками генов, прорезающими островные леса и луга. Случайная модель спаривания еще менее реалистична. Но не беда. Мы создаем идеальные модели. Результат может показаться удивительным. И тогда мы должны решить, что кажется нам более удивительным: реальный мир или результат моделирования.
Джозеф Чан, следуя давней традиции специалистов по математической генетике, остановился на случайном спаривании: в своей модели он не учитывал размер популяции, приняв его за константу. Чан не рассматривал Тасманию, но для простоты расчетов допустим, что постоянная численность популяции составляла 5 тыс. человек (это одна из оценок аборигенного населения Тасмании 1800 года, накануне резни). Повторюсь, такие упрощения крайне важны для математического моделирования: это не недостаток метода, а наоборот, в некоторых отношениях его достоинство. Понятно, что Чан верит в случайное спаривание людей не больше, чем Евклид верил в то, что у прямых нет толщины. Посмотрим, куда нас приведут эти допущения, и решим, стоит ли обращать внимание на отличия модели от реального мира.
На сколько поколений назад нам нужно отойти, чтобы встретить человека, который был предком всех ныне живущих людей? Вот ответ, рассчитанный с помощью абстрактной модели: логарифм (с основанием 2) численности населения. Логарифм числа по основанию 2 – это то, сколько раз нужно умножить 2 на само себя, чтобы получить это число. Чтобы получить 5000, нужно умножить 2 на 2 примерно 12,3 раза. Значит, в нашем примере с Тасманией мы должны вернуться на 12,3 поколения, чтобы найти сопредка. Допустим, за столетие сменяется четыре поколения. Тогда продолжительность жизни 12,3 поколения составит 400 лет. Или еще меньше – если детьми обзаводятся родители, не достигшие 25 лет.
Назовем момент жизни последнего общего предка данной популяции точкой “Чан-один”. Продолжая двигаться в прошлое от “Чан-один”, мы вскоре окажемся в точке “Чан-два”, в которой каждый человек либо наш общий предок, либо вообще не оставил потомков. И лишь в коротком отрезке между точками “Чан-один” и “Чан-два” будет существовать промежуточная категория людей, которые имеют некоторое количество выживших потомков, но при этом не являются нашими общими предками. Отсюда следует: подавляющее большинство людей в точке “Чан-два” – наши общие предки: около 80 % людей в любой линии теоретически являются предками всех, кто будет жить в далеком будущем.
Что до датировок, то математики дают следующий ответ: “Чан-два” приблизительно в 1,77 раза старше “Чан-один”. Число 1,77, умноженное на 12,3, дает чуть меньше 22 поколений, то есть 500–600 лет. Значит, отправляясь в прошлое Тасмании, мы окажемся в области “все или ничего” во времена Джеффри Чосера. Если же мы переместимся в эпоху, когда Тасмания была соединена с Австралией, то все, кто нам повстречается, будут либо предками всей популяции, либо не оставят потомков.
Как недавно это было! Более того, вывод не слишком изменится, если рассмотреть крупную популяцию. Если в качестве модельной популяции взять популяцию с населением, равным по численности населению современной Великобритании (60 млн человек), нужно вернуться в прошлое всего на 23 поколения, чтобы достичь точки “Чан-один” и встретить самого позднего из наших общих предков. Если применить эту модель к Великобритании, от точки “Чан-два”, когда каждый человек является предком либо всех современных британцев, либо ни одного, нас будет отделять около 40 поколений. Это соответствует приблизительно 1000 году. Если бы эта модель отвечала реальности (это, конечно, не так), то англосаксонский король Альфред Великий был бы предком либо всех современных британцев, либо ни одного из них.
Повторю предостережения, с которых я начал. Между модельной и реальной популяциями множество отличий: в Великобритании, в Тасмании, где угодно. Население Великобритании в историческое время увеличилось, стремительно достигнув нынешней численности, и это полностью меняет все расчеты. Кроме того, ни в одной реальной популяции люди не спариваются случайным образом. Они предпочитают искать пару в своем племени, языковой группе или географической области – и, конечно, у всех есть личные предпочтения. Вдобавок все осложняется историей Великобритании: хотя с географической точки зрения это остров, его население не изолировано. На протяжении веков на остров обрушивались волны европейских иммигрантов, среди которых были римляне, саксы, норманны и нормандцы.
Тасмания и Британия – острова, но и весь мир – “остров”, потому что он не испытывает ни иммиграции, ни эмиграции (похищение людей инопланетянами не учитываем). Однако мир, так уж вышло, делится на континенты и острова, и перемещению людей мешают не только моря, но и горные хребты, реки и пустыни. Все эти сложные отклонения от принципа случайного спаривания сильно затрудняют вычисления. Современное население мира составляет 6 млрд, но ведь было бы нелепо вычислять логарифм 6 млрд, умножать его на 1,77 и верить, что полученный 500 г. н. э. и есть время рандеву № о! Конечно, оно произошло раньше – хотя бы потому, что очаги обитания человечества существовали в изолированном виде гораздо дольше, чем следует из наших расчетов. Если остров был изолирован 13 тыс. лет, как в случае Тасмании, то общий предок человечества не может быть младше 13 тыс. лет. Даже частичная изоляция субпопуляций вносит хаос в аккуратные вычисления, как и любая форма неслучайного спаривания.
Момент, когда островная популяция стала изолированной, указывает нижнюю границу рандеву № о. Но если мы хотим относиться к ней всерьез, изоляция должна быть полной. Это следует из расчетной величины 80 %. Один-единственный человек, эмигрировавший в Тасманию, имеет 80-процентный шанс стать общим предком всех тасманийцев – при условии, что сможет достаточно адаптироваться, чтобы оставить потомство. Таким образом, даже ничтожного числа мигрантов достаточно, чтобы генеалогическое древо изолированной популяции оказалось привитым к материковому древу. Датировка рандеву № о, по-видимому, должна обусловливаться тем, когда наступила полная изоляция самого изолированного очага от соседей. Кроме того, нужно учитывать время, когда сосед этой популяции полностью изолировался от собственного соседа, и так далее. Нам понадобится несколько раз перепрыгнуть с острова на остров, прежде чем мы сможем объединить все генеалогические деревья. Однако и после этого придется продвинуться еще на несколько веков в прошлое, чтобы встретить сопредка № о. Значит, рандеву № о состоится несколько десятков тысяч лет назад – и до нескольких сотен тысяч лет.
Что касается места рандеву № о, то оно покажется вам неожиданным. Наверняка вы в первую очередь подумали об Африке – как и я. Там наблюдается самое высокое генетическое разнообразие, и поэтому кажется, что логично искать здесь общего предка всех ныне живущих людей. Не зря говорят, что если убрать Африку южнее Сахары, то большая часть генетического разнообразия будет утрачена, а если избавиться от всех континентов, кроме Африки, то ничего особенно не изменится. Однако сопредок № о вполне мог жить и вне Африки. Он – последний общий предок, объединяющий самую географически изолированную популяцию (в нашем случае популяцию Тасмании) со всем остальным миром. Допустим, популяции всего остального мира, включая Африку, в той или иной степени практиковали межпопуляционное скрещивание в течение длительного периода, когда Тасмания была полностью изолирована. Тогда, согласно логике Чана, мы можем предположить, что сопредок № о жил вне Африки, недалеко от места старта мигрантов, потомки которых оказались в итоге на Тасмании. Тем не менее, в африканских популяциях по-прежнему хранится большая часть генетического разнообразия человечества. Кажущийся парадокс я объясню в следующем рассказе.
Неожиданный вывод: сопредок № о, по-видимому, жил несколько десятков тысяч лет назад, и вполне возможно, вовсе не в Африке. Другие виды тоже, как правило, имеют относительно молодых общих предков. Но не только это заставляет нас в новом свете увидеть биологические идеи. Специалистам по эволюции кажется парадоксальным то, что 80 % популяции могут быть нашими общими предками. Мы привыкли думать, что организмы соревнуются в приспособленности. Однако что это – “приспособленность”? Одна из удачных упрощенных трактовок – “общее число детей”. Другая – “общее число внуков”. Но поскольку ничто нас не заставляет останавливаться на внуках, многие авторы предпочитают говорить о “общем количестве далеких потомков”. Но если в отсутствие естественного отбора 80 % особей в идеальной популяции вполне могут иметь максимально возможную “приспособленность”, они могут претендовать на то, что все население будет их потомками! Для дарвинистов это важно, ибо они считают, что именно за повышение “приспособленности” борются все животные.
Я всегда говорил, что единственная причина, в силу которой организм ведет себя так, будто у него есть в жизни цель, заключается в том, что им управляют гены, преуспевшие в прошлых поколениях. Всегда есть искушение персонифицировать организм и навязать ему намерения, уподобляя “выживание генов в прошлом” чему-нибудь вроде “стремления размножаться в будущем”. Или “личному стремлению иметь в будущем много потомков”. Так нередко думают и о генах: нам хочется думать, что гены влияют на тела, заставляя их вести себя так, чтобы в будущем число копий этих генов увеличилось.
Ученые, использующие такие выражения по отношению к особи или гену, прекрасно понимают, что это просто оборот речи. Гены – это молекулы ДНК. Нужно быть безумцем, чтобы думать, что “эгоистичные” гены сознательно стремятся выжить! В мире распространены преуспевшие в прошлом гены. А поскольку мир обладает определенной стабильностью и не меняется в одночасье, ни с того ни с сего, то генам, которые уцелели в прошлом, скорее всего, будет сопутствовать успех и в будущем. То есть они будут программировать тела, которые успешно выживают и оставляют детей, внуков и так далее. Итак, мы вернулись к организмоцентричному определению приспособленности. Но теперь мы понимаем, что особи имеют значение лишь как средства выживания генов. Особи, имеющие внуков и далеких потомков, на самом деле инструмент. И мы снова приходим к тому же парадоксу: 80 % способных к размножению особей, казалось бы, максимально приспособлены!
Чтобы разрешить этот парадокс, вернемся к нашей теоретической базе: к генам. Попробуем устранить один парадокс с помощью другого. Представим: организм может быть общим предком всех в далеком будущем, но при этом к тому времени не сохранится ни одного его гена! Как?
Всякому ребенку достается половина генов родителя, внуку – примерно четверть. В отличие от потомков первого поколения, у которых долю вклада родительских генов можно определить точно, для внуков эти значения можно оценить лишь статистически. Число родительских генов у них может превышать четверть, а может быть и меньше ее. Половину генов вы получаете от отца, половину – от матери. Заводя ребенка, вы передаете ему половину своих генов. Но какая половина ваших генов ему достанется? В некотором усредненном случае они будут в равном соотношении выбраны из тех генов, которые достались вам от дедушки вашего ребенка, и из тех генов, которые вы получили от бабушки вашего ребенка. Но может случиться так, что вы передадите ребенку все гены своей матери и ни одного гена своего отца. В этом случае от вашего отца к его внуку не перейдет ни одного гена. Конечно, такой сценарий маловероятен, однако по мере того, как мы переходим ко все более далеким потомкам, вероятность того, что им не досталось ни одного гена многажды прабабушки и прадедушки, становится все выше. В среднем в теле вашего правнука окажется около восьмой части ваших генов, праправнука – шестнадцатой (эти значения могут быть больше или меньше), и так далее, пока вероятность практически нулевого вклада ваших генов в данного потомка не станет статистически достоверной.
В гипотетической тасманийской популяции точку “Чан-два” от нас отделяют 22 поколения. То есть когда мы говорим, что 80 % популяции могут стать предками всех ныне живущих людей, мы имеем в виду их праправнуков в 22-м поколении. Доля генома предка, которую в среднем можно будет найти в одном из правнуков в 22-м поколении, составляет четырехмиллионную часть. А поскольку геном человека состоит всего из нескольких тысяч генов, очевидно, что четырехмиллионная часть должна быть распределена в высшей степени экономно! Конечно, в нашем случае это не совсем так, потому что численность населения гипотетической Тасмании – всего 5 тыс. человек. Родословную, связывающую конкретного человека с конкретным предком, можно построить множеством способов. И все равно могло случиться, что некоторые общие предки не передали дальним потомкам ни одного гена.
Возможно, я необъективен, но мне кажется, что это еще одна причина считать ген центральным объектом естественного отбора и фокусироваться на прошлом тех генов, которые смогли дожить до настоящего времени, а не на том, что ждет особей или даже гены. Нацеленный на будущее образ мышления может быть полезен, если пользоваться им осторожно, но на самом деле нужды в нем нет. Подход, оценивающий прошлое генов, может быть не менее эффективным. Он ближе к истине и с меньшей вероятностью даст неверный ответ.
В “Рассказе Тасманийца” мы говорили о “генеалогических” предках: исторических лицах, которые являются предками современных людей в понимании специалиста по генеалогии, то есть “прародителями”. Однако это применимо и к генам. У генов тоже есть “родители”, “прародители”, “внуки”. У генов тоже есть “родословные”, “генеалогические деревья”, “последние общие предки”. У генов есть свое рандеву № о, и в этом случае мы смело можем сказать, что для большинства генов оно состоялось в Африке. Это очевидное противоречие потребует разъяснений (см. “Рассказ Митохондриальной Евы”).
Прежде чем продолжить, постараюсь предотвратить возможную путаницу со значением слова “ген”. Люди могут очень по-разному понимать это слово, но самая большая неразбериха вот в чем. Некоторые биологи, особенно молекулярные генетики, зарезервировали слово “ген” за обозначением места на хромосоме (локуса), а каждую альтернативную версию гена, которая может находиться в этом месте, они называют “аллелем”. Вот пример: у гена цвета глаз есть различные версии, или аллели, включая аллель голубых глаз и аллель карих глаз. Другие биологи (особенно тип, к которому принадлежу я – нас иногда называют социобиологами, специалистами по поведенческой экологии, этологами) под словом “ген” чаще подразумевают то же, что и “аллель”. Когда нам нужно слово для обозначения места на хромосоме, которое может быть занято любым аллелем из набора, мы обычно говорим: локус. Такие, как я, могут сказать: “Представьте себе ген голубых глаз и альтернативный ему ген карих глаз”. Не всем молекулярным генетикам это нравится, но я уже привык.
Рассказ Митохондриальной Евы[3]
Между родословными генов и людей есть заметная разница. В отличие от человека, у которого всегда два родителя, у гена “родитель” лишь один. Каждый из ваших генов достался вам либо от матери, либо от отца; только от одного из четырех бабушек и дедушек; только от одного из восьми прабабушек и прадедушек, и так далее. Но когда люди составляют родословную, они считают своими предками в равной степени обоих родителей (четырех прародителей, восьмерых прапрародителей и так далее). “Генеалогия людей”, таким образом, гораздо запутаннее “генеалогии генов”. В определенном смысле ген следует одним-единственным путем из множества пересекающихся дорожек, лежащих в основе человеческой родословной. Подобно генам ведут себя наши фамилии, но не люди. Наша фамилия следует лишь одной ветви раскидистого генеалогического древа и передается по мужской линии. ДНК же, за исключением двух случаев, не женоненавистница: родословная генов с равной вероятностью прослеживается и по мужской, и по женской линии.
Генеалогические древа европейских королевских семей входят в число человеческих родословных, задокументированных наилучшим образом. В Саксен-Кобург-Готской династии обратите особое внимание на принцев Алексея, Вальдемара, Генриха и Руперта (см. рис.). “Родословную” одного из их генов проследить особенно легко, потому что (к несчастью для них) ген был дефектным. Из-за него четыре принца и многие другие члены злополучной семьи приобрели гемофилию. Это заболевание крови передается по Х-хромосоме. У мужчин лишь одна Х-хромосома, которую они наследуют от матери. У женщин Х-хромосом две – по одной от каждого родителя. Женщины болеют гемофилией, лишь если унаследовали дефектную версию гена и от матери, и от отца (гемофилия – “рецессивное” заболевание). Мужчины же болеют, если дефектный ген несет единственная “незащищенная” Х-хромосома. Таким образом, от гемофилии страдает ничтожно мало женщин, при этом многие женщины являются ее носителями и с пятидесятипроцентной вероятностью передают ее ребенку. Такие женщины надеются, что родят дочь, но и в этом случае остается риск того, что гемофилия перейдет к внукам. Если больной гемофилией мужчина проживет достаточно долго для того, чтобы иметь детей, он не сможет передать дефектный ген сыну (мужчины никогда не получают Х-хромосому от отца), но обязательно передаст его дочери (женщины всегда получают единственную Х-хромосому отца). Помня эти правила и зная, у каких мужчин из королевской династии была гемофилия, можно проследить путь дефектного гена.
Наследование гемофилии в Саксен-Кобург-Готской династии.
Судя по всему, первой мутантным геном обзавелась королева Виктория. Это не был ее муж Альберт, потому что его сын, принц Леопольд, был гемофиликом, а сыновья получают А-хромосому не от отца. Ни один из родственников Виктории в побочной линии не страдал от гемофилии. Ошибка при копировании могла произойти в яйцеклетке ее матери, Виктории Саксен-Кобург-Заальфельдской, или (это вероятнее по причинам, о которых рассказывает Стив Джонс в книге “Язык генов”), “в августейших яичках ее отца, Эдуарда Августа, герцога Кентского”.
Хотя сами родители Виктории не были носителями дефектного гена и не страдали от гемофилии, очевидно, у одного из них имелся ген (строго говоря – аллель), который стал предмутантным “родителем” гена гемофилии. Мы можем попробовать проследить судьбу этого гена королевы Виктории до его мутации. Для нас несущественно, что у Виктории копия гена была повреждена, а у ее предшественников – нет. Изучая “родословную” гена, мы игнорируем все его проявления, кроме тех, которые делают его “видимым”. Ген должен был появиться задолго до Виктории, но видимый его след утерян, потому что в то время он еще не был геном гемофилии. Мораль в том, что у каждого гена один “родительский” ген, даже если в результате мутации они стали непохожими. Точно так же у родительского гена есть лишь один родитель, а у того – свой, и так далее. Эти рассуждения могут показаться странными, но помните: мы ищем предков. Именно так выглядит поиск предка с точки зрения гена.
В “Рассказе Тасманийца” мы ввели понятие “последний общий предок” (ПОП), альтернативное понятию “сопредок”. Я хочу зарезервировать “сопредка” за последним общим предком всей родословной (людей или организмов). Поэтому, говоря о генах, я буду говорить о ПОП. Два или более аллелей у разных особей (или даже у одной) обязательно имеют ПОП. Это предковый ген, и каждый из этих аллелей – его копия (возможно, мутантная). ПОП генов гемофилии принцев Вальдемара и Генриха Прусских находился на одной из двух А-хромосом их матери Ирены Гессен-Дармштадтской. Когда она была еще в утробе, две копии гена гемофилии, носителем которого она была, разделились и попали последовательно в две ее яйцеклетки, из которых получились ее несчастные сыновья. Эти гены, в свою очередь, имеют ПОП с геном гемофилии русского царевича Алексея (1904–1918): это ген, носителем которого была их бабушка – Алиса Гессенская. И, наконец, ПОП генов гемофилии этих четырех принцев – тот самый ген, с которого мы начали разговор: мутантный ген королевы Виктории.
У генетиков есть термин для ретроспективного анализа генов: коалесцентный. Если посмотреть в прошлое, линии этих двух генов в некотором роде сходятся (коалесцируют) в одной точке. Если же из этой точки снова взглянуть вперед, мы увидим, как две копии родительского гена передаются двум потомкам. Точка схождения этих линий и есть ПОП. В любой генной “родословной” много точек схождения. Линии генов гемофилии Вальдемара и Генриха сходятся в точке гена ПОП – их матери Ирены. Эта линия затем соединяется с ветвью, ведущей к царевичу Алексею. И, как мы видели, окончательно линии генов гемофилии сходятся на Виктории.
Она, ко всему, их последний общий генеалогический предок (“прародитель”), то есть их сопредок. Но это совпадение. Если бы мы выбрали другой ген (например, ген цвета глаз), его путь по генеалогическому древу был бы другим, и гены сходились бы в более далеком предке. Если бы мы выбрали ген карих глаз у принца Руперта и ген голубых глаз у принца Генриха, точка их схождения была бы по меньшей мере столь же отдаленной, как разделение предкового гена цвета глаз на две формы. А это событие таится во мраке веков. У каждого фрагмента ДНК есть “родословная”, которую можно узнать примерно так, как родословную человека – по метрическим книгам.
Мы можем сделать это даже для двух идентичных генов одного человека. У принца Чарльза голубые глаза. Это рецессивный признак, и, значит, у него было два аллеля голубых глаз. Эти два аллеля должны сходиться, но где и когда, мы не знаем. Это могло быть несколько веков и даже тысячелетий назад, но в случае принца Чарльза два аллеля голубых глаз, возможно, сходятся в королеве Виктории. Она предок Чарльза сразу по двум линиям: через короля Эдуарда VII и принцессу Алису Гессен-Дармштадтскую. Согласно этой гипотезе, ген голубых глаз Виктории копировался дважды. Эти копии достались, соответственно, нынешней королеве (правнучке Эдуарда VII) и ее мужу, принцу Филиппу (правнуку Алисы). Таким образом, две копии одного гена Виктории, вполне возможно, встретились на двух разных хромосомах принца Чарльза. Вообще-то с некоторыми его генами это произошло наверняка, пусть даже не с геном голубых глаз. И независимо от того, сходятся ли два гена голубых глаз в королеве Виктории или более далеком предке, у этих двух генов в любом случае есть ПОП. Неважно, говорим мы о двух генах одного человека (Чарльз) или о двух генах двух людей (Руперт и Генрих): логика не меняется. В отношении любых двух аллелей (одного или разных людей) закономерен вопрос: когда и в ком сошлись эти гены в прошлом? Этот вопрос можно задать относительно любых трех (или другого числа) генов в популяции, если они занимают в геноме одно и то же положение (локус).
Если заглянуть еще глубже в прошлое, этот вопрос можно задать и касательно пар генов в различных локусах, потому что гены в процессе дупликации порождают гены в других локусах. К этому мы вернемся в “Рассказе Ревуна” и “Рассказе Миноги”.
Степень родства у людей можно представить как своего рода решение, принятое большинством генов. Некоторые ваши гены “голосуют”, например, за королеву в качестве близкой родственницы. Другие полагают, что вы ближе к более далеким родственникам (иногда даже к представителям других видов). Если “опросить” разные участки ДНК, то выяснится, что у всех собственное представление о прошлом. Полную картину можно получить, опросив большое количество генов. Но нужно быть осторожным с генами, расположенными близко на хромосоме. Чтобы понять, почему, нужно узнать кое-что о рекомбинации при образовании сперматозоида или яйцеклетки.
Хромосомы при рекомбинации обмениваются случайными участками тождественной ДНК. В среднем на одну хромосому человека приходится всего один-два таких обмена (при образовании сперматозоида – меньше, при образовании яйцеклетки – больше, причем неизвестно, почему). С поколениями все больше участков хромосомы меняются местами. Чем ближе расположены два участка ДНК на хромосоме, тем меньше шансов, что между ними произойдет обмен, и выше вероятность, что они будут наследоваться вместе.
Поэтому при “подсчете голосов” генов следует помнить, что чем ближе друг к другу гены на хромосоме, тем вероятнее, что у них общая история. Такие гены при голосовании поддерживают друг друга. В крайнем варианте участки ДНК оказываются настолько сильно связаны, что весь фрагмент – гаплотип – ведет себя как целое. Единогласие в “парламенте генов” нарушают лишь два его члена – и не потому, что у них особое видение истории, а потому, что их чаще других использовали для улаживания биологических “дебатов”. Оба придерживаются сексистских взглядов: один передается лишь через женские тела, а второй никогда не бывал вне мужского. Это два главных исключения из принципа равномерного генного наследования.
Как и фамилия, К-хромосома (та ее часть, которая не участвует в рекомбинации) передается лишь по мужской линии. К-хромосома содержит генетический материал, который фактически переключает эмбрион на мужской тип развития. Митохондриальная ДНК, напротив, передается исключительно по женской линии (хотя и не отвечает за женский путь развития эмбриона: у мужчин тоже есть митохондрии, но они не передают их потомкам). На Великом историческом рандеву мы увидим, что митохондрии – это крошечные тельца в клетках, потомки некогда свободноживущих бактерий, которые около 2 млрд лет назад на особых правах поселились внутри клеток. Там они размножались бесполым способом – простым делением. Многие свои бактериальные свойства они утратили, как и большую часть ДНК, но того, что сохранилось, оказалось достаточно для генетиков. Митохондрии составляют независимую линию генетической преемственности, не связанную с главной ядерной линией, о которой мы привыкли думать как о “наших” генах.
Скорость мутирования К-хромосомы делает ее удобным инструментом для исследований современных популяций. В ходе одного исследования ученые собрали образцы ДНК К-хромосомы из точек на прямой, проходящей через современную Великобританию. Результаты показали, что К-хромосомы англосаксов двигались из Европы на запад и довольно резко остановились у границы Уэльса. Нетрудно представить, почему ДНК, которая переносится мужчинами, не является показательной для остальной части генома. Вот более очевидный пример: корабли викингов, которые несли груз К-хромосом (и других генов), распространили его на огромной территории. Современное распределение генов К-хромосомы викингов указывает, что путешествовать им нравилось сильнее, чем остальным генам викингов, предпочитавшим странствиям родной очаг.
Митохондриальная ДНК тоже может показать неплохие результаты, особенно в отношении древних событий. Если сравнить нашу митохондриальную ДНК, можно будет сказать, как давно жил общий митохондриальный предок. А поскольку мы получаем митохондрии от матерей, а те – от бабушек по материнской линии, прабабушек по материнской линии и так далее, мы можем выяснить, когда жил наш последний предок по материнской линии – наша праматерь. То же можно сделать и для У-хромосом. Это поможет узнать, когда жил наш последний предок по мужской линии – наш праотец. Впрочем, это не так-то просто сделать по техническим причинам. Прелесть У-хромосомной и митохондриальной ДНК в том, что они не “загрязнены” половым смешением.
Митохондриальную праматерь человечества, которая соответствует общему предку всех людей по материнской линии, иногда называют “Митохондриальной Евой”. А общего предка человечества по мужской линии можно назвать “У-хромосомным Адамом”. У всех мужчин есть У-хромосома Адама (креационисты, молчите). Если бы передача фамилий всегда соответствовала нынешним правилам, все мы носили бы фамилию Адама. Впрочем, в этом случае фамилия, наверное, утратила бы смысл.
Ева – великая искусительница, так что будем начеку. Во-первых, важно понимать, что Адам и Ева – лишь два представителя множества последних общих предков. Конечно, это предки особенные: мы встретим их, если двинемся по генеалогической схеме соответственно от матери к матери или от отца к отцу. Но есть масса других способов передвижения по генеалогическим схемам: от отца матери к отцу его матери, от матери матери к отцу ее отца, и так далее. В конце каждой линии стоит свой ПОП.
Во-вторых, Ева и Адам не были парой. Если они и были знакомы, то случайно. Возможно, их разделяли десятки тысяч лет. Есть основания полагать, что Ева жила раньше Адама. Репродуктивный результат у мужчин варьирует больше, чем у женщин: у некоторых женщин может быть впятеро больше детей, чем у других, а у самых успешных мужчин – в сотни раз больше, чем у неудачников. Мужчина с большим гаремом легко может стать общим предком человечества. Женщине же, поскольку ей не так просто завести настолько обширную семью, для совершения такого подвига необходимо большее число поколений. И действительно, самые точные пока “молекулярные часы” оценивают возраст Евы примерно в 140 тыс. лет, Адама – всего около 60 тыс. лет.
В-третьих, Адам и Ева – это переходящее почетное звание, а не имена конкретных людей. Если завтра умрет последний представитель некоего богом забытого племени, эстафетная палочка Адама или Евы может оказаться на несколько тысяч лет впереди. Это касается и остальных ПОП у основания деревьев других генов. Чтобы понять, почему это так, предположим, что у Евы было две дочери, одна из которых стала прародительницей тасманийских аборигенов, а вторая – остальной части человечества. Также допустим, и не без оснований, что ПОП по женской линии, объединяющий “остальную часть человечества”, жил 10 тыс. лет спустя после того, как вымерли остальные побочные линии, идущие от Евы – кроме тасманийцев. И получается, что когда умерла Труганини, последняя тасманийка, звание Евы немедленно помолодело на 10 тыс. лет.
В-четвертых, в своей эпохе Адам и Ева особенно не выделялись. В отличие от легендарных тезок, Митохондриальная Ева и Е-хромосомный Адам не были одиноки. У них были друзья и знакомые, и каждый из них, возможно, имел немало половых партнеров, от которых тоже могли остаться потомки. Единственное, что выделяет их – у Адама в итоге оказалось огромное количество потомков по мужской линии, а у Евы – по женской. Возможно, вместе они оставили столько же потомков, сколько все их современники.
Когда я это писал, мне прислали документальный фильм Би-би-си “Родина” (Motherland) – “невероятно трогательный” и с “красивейшим, незабываемым сюжетом”. Героями фильма были трое “черных” (почему здесь кавычки, я объясню в “Рассказе Кобылки”), семьи которых переехали с Ямайки в Великобританию. Их ДНК сравнивали с образцами ДНК из международных баз данных, чтобы установить, из какой части Африки вывезли их предков. Продюсерская компания организовала слезное воссоединение героев с давно утраченной африканской родней. В исследовании использовались Е-хромосомная и митохондриальная ДНК: их легче изучать, чем остальные гены. К сожалению, продюсеры не признались, какие ограничения имеет избранный метод. Они намеренно ввели в заблуждение и героев, и их “родственников” (несомненно, у телевизионщиков были веские причины), благодаря чему сцена воссоединения получилась гораздо эмоциональнее, чем полагалось.
Когда Марк, которому дали родовое имя Каигама, приехал в племя канури в Нигере, он считал, что “возвращается” в земли “своего народа”. Болу приветствовали на острове у побережья Гвинеи восемь женщин из племени буби, с которыми у нее совпала митохондриальная ДНК. Бола говорила:
Это как кровь соприкасается с кровью… Это как семья… Я плакала, мои глаза были полны слез, мое сердце билось. Я думала только об одном – я возвращаюсь на родину.
Зря она поддалась на обман. Все, с кем они с Марком встречались – по крайней мере, насколько мы можем судить, – просто обладали такой же, как у них, митохондриальной ДНК. Вообще-то Марку к тому времени уже сказали, что его К-хромосома родом из Европы (сначала это его огорчило, но позднее он обнаружил желанные африканские корни в своих митохондриях). У Болы, конечно, нет К-хромосомы, и, судя по всему, никто не потрудился взглянуть на К-хромосому ее отца, хотя это было бы любопытно: ее кожа довольно светлая. Никто не объяснил ни телеаудитории, ни Боле, ни Марку, что у остальных их генов, лежащих вне митохондрий, почти наверняка много “родин” вовсе не там, куда поместили ее создатели фильма. Если кто-нибудь проследил бы родословные других генов, столь же эмоциональное “воссоединение” могло бы произойти в любой части Африки, Европы и, скорее всего, даже Азии. Но это, конечно, лишило бы фильм драматизма.
Я не раз говорил, что использование лишь одного гена может привести к ошибкам. Зато данные, полученные от множества генов, дают нам мощный инструмент. Генные деревья для популяции и точки их ветвления отражают события прошлого. Мы можем не только установить точки ветвления, но и оценить их возраст с помощью “молекулярных часов”. И здесь ключ к разгадке, потому что схема ветвления генных деревьев, привязанная ко времени, может сказать очень о многом. Случайное спаривание (см. “Рассказ Тасманийца”) дает совсем не такой узор ветвлений, как разного рода неслучайные спаривания – каждое из них придает генному дереву особенную форму. Колебания численности популяции тоже оставляют характерный отпечаток. Таким образом, на основе нынешних паттернов распространения генов можно реконструировать прошлое, сделать выводы о размере популяций и датировать миграции. Когда популяция небольшая, дерево ветвится чаще. Увеличение популяции приводит к тому, что у деревьев отрастают длинные ветви, а точки ветвления концентрируются у основания дерева, где численность популяции еще невелика. Это свойство мы можем использовать, чтобы с помощью “молекулярных часов” определить, когда популяция увеличивалась, а когда уменьшалась, проходя сквозь “бутылочное горлышко”. Хотя, к сожалению, самые узкие “горлышки” не только стирают генетические линии, но и часто уничтожают все следы того, что было до них.
Коалесцентные генные деревья помогли разрешить давние споры о происхождении человека. Согласно “африканской теории”, все люди, живущие за пределами Африки, – потомки одной волны миграции (около 100 тыс. лет назад). Другой крайности держатся сторонники “мультирегионального” происхождения человека, считающие, что ныне живущие расы, скажем в Азии, Австралии и Европе, разделились очень давно и происходят от местных популяций Homo erectus, которые эволюционировали независимо. Оба названия сбивают с толку. Название “африканской” теории неудачно потому, что никто не спорит с тем, что все наши предки – из Африки. “Мультирегиональная” – тоже не лучшее название для теории, потому что самая древняя предковая популяция была единой. Сторонники двух этих теорий спорят о времени, когда мы покинули Африку. Так что, по-моему, лучше назвать теории так: “недавно из Африки” (“недавний исход”) и “давно из Африки” (“давний исход”). Дополнительный плюс таких названий в том, что они подчеркивают связь между ними.
Если бы все современные неафриканцы были потомками одной-единственной волны эмиграции из Африки, современные паттерны распределения генов указывали бы на недавнее прохождение небольшой африканской популяцией “бутылочного горлышка”. И точки ветвления генных деревьев тогда были бы сосредоточены вокруг даты массовой эмиграции. Если же мы независимо появились из региональных популяций H. erectus, то гены, напротив, должны указывать на то, что в каждом регионе существуют свои давно разделившиеся генетические линии. И тогда, вопреки утверждениям сторонников “недавнего исхода” о массовой эмиграции, мы почти не обнаружим точек ветвления. Что же мы видим на самом деле?
Ожидать единственного ответа на этот вопрос значило бы попасться в ту же ловушку, что и авторы фильма “Родина”. У всех генов своя история. Вполне возможно, что некоторые наши гены действительно из Африки, в то время как другие достались нам от разных популяций H. erectus. Иными словами, мы можем одновременно быть потомками и африканских эмигрантов, и региональных популяций H. erectus, потому что в любой момент в прошлом мы можем обнаружить огромное количество своих предков. Некоторые, возможно, недавно покинули Африку. Другие могли тысячи лет жить, скажем, на Яве. От первых мы могли унаследовать африканские, от вторых – яванские гены. Отдельный участок ДНК, такой как митохондриальная ДНК или К-хромосома, дает столь же скудное представление о прошлом, как отдельная фраза из учебника истории. И все же сторонники теории “недавнего исхода” часто опираются именно на данные Митохондриальной Евы. Но что будет, если “опросить” других членов “парламента” генов?
По сути, именно это сделал эволюционный биолог Алан Темплтон, предложивший теорию с удачным названием “Из Африки – снова и снова”. Темплтон использовал коалесцентную модель (подобную той, которой мы воспользовались, обсуждая гемофилию), однако применил ее не к одному гену, а к множеству. Это позволило реконструировать историю и географию генов по всему миру на отрезке в несколько сотен тысяч лет. На сегодняшний день я отдаю предпочтение Темплтону: мне кажется, он использует всю доступную информацию способом, который позволяет делать максимально обоснованные выводы. Кроме того, на каждом этапе работы он оглядывается назад, чтобы избежать злоупотребления данными.
Темплтон изучил литературу по генетике, по самым строгим критериям отобрав лишь нужное: крупные исследования в области генетики человека, в которых образцы собирали в Европе, Азии, Африке и так далее. Изучаемые гены относились к долгоживущим гаплотипам. Гаплотип – это участок генома, который либо защищен от изменений, возникающих в ходе рекомбинации (как в случае Т-хромосомы и митохондриальной ДНК), либо может оставаться неизменным достаточное для нас время (случай некоторых других, меньших участков генома). Гаплотип – это долгоживущий, легко узнаваемый участок генома. Можно представить его как “большой ген”.
Темплтон рассмотрел тринадцать гаплотипов. Для каждого он построил “генное дерево” и датировал точки ветвления с помощью “молекулярных часов”, которые были откалиброваны в основном по ископаемым. На основе датировок и географического распределения образцов он реконструировал несколько миллионов лет генетической истории нашего вида.
Главный вывод Темплтона в том, что основных волн миграции из Африки было не две, а три. В дополнение к “давнему исходу” Homo erectus около 1,7 млн лет назад (эта дата общепризнанна и основана главным образом на датировках ископаемых остатков) и недавней волне миграции, которая соответствует теории “недавнего исхода”, 840–420 тыс. лет назад случился Великий поход из Африки в Азию. Эта средняя волна миграции (“средний исход”?) подтверждается дошедшими до нас “сигналами” трех гаплотипов из тринадцати. Недавний исход подтверждается данными митохондриальной ДНК и Т-хромосом. Другие генетические “сигналы” указывают на масштабную обратную миграцию из Азии в Африку около 50 тыс. лет назад. Кроме того, митохондриальная ДНК и некоторые “небольшие” гены говорят о том, что немного позднее были и другие волны миграции: из Южной Европы в Северную, из Южной Азии в Северную, через Тихий океан в Австралию. И, наконец, согласно данным митохондриальной ДНК и археологическим находкам, около 14 тыс. лет назад произошло переселение из Северо-Восточной Азии в Северную Америку – через существовавший тогда Берингов перешеек. Вскоре после этого произошла колонизация Южной Америки – через Панамский перешеек. Кстати, говорить, что Америку открыл Христофор Колумб или Лейф Эриксон, – не что иное, как расизм. Не менее неприятно, на мой взгляд, релятивистское “уважение” к преданиям американских индейцев, которые по своему невежеству отказываются признавать, что их предки могли жить где-либо, кроме Америки.
Из Африки – снова и снова. Схема основных миграций человека, построенная А. Темплтоном на основе изучения 13 гаплотипов. Вертикальные линии соответствуют наследованию, диагональные отображают генетический перенос. Стрелками показаны миграции, подтвержденные данными генетических исследований. TEMPLETON [284][4].
В промежутках между тремя темплтоновскими волнами, как показывают генетические данные, происходил непрерывный перенос генов между Африкой, Южной Европой и Южной Азией. Согласно данным Темплтона, крупные и мелкие волны миграции сопровождались скрещиванием с местным населением, а не полным истреблением той или иной стороны – хотя, возможно, и такое бывало. Это очень важно для понимания нашей родословной.
Наш рассказ, как и исследование Темплтона, посвящен людям и их генам. Однако родословные есть не только у человека. Все виды наследуют генетический материал, и у всех видов с половым размножением есть свои Адам и Ева. Методы изучения недавней истории человечества применимы и к остальным формам жизни. Так, ДНК гепарда “рассказала”, что 12 тыс. лет назад популяция прошла сквозь “бутылочное горлышко”. Эта информация важна для специалистов по охране кошачьих. В ДНК кукурузы сохранились несомненные свидетельства ее одомашнивания, которое произошло в Мексике 9 тыс. лет назад. Паттерны ветвления у деревьев штаммов ВИЧ могут использовать эпидемиологи и врачи, чтобы понять принципы распространения вируса и научиться его сдерживать. Гены и генные деревья проливают свет на историю флоры и фауны Европы: они рассказывают о массовых миграциях, вызванных ледниковыми периодами, которые постепенно оттесняли виды умеренного климата в южноевропейские убежища (рефугиумы) и оставляли арктические виды в изолированных горных областях. Эти и другие события можно проследить, изучая данные о распределении ДНК по земному шару. Эти данные составляют исторический справочник, который нам еще предстоит прочесть.
Мы видели, что каждый ген может рассказать свою историю; совместив эти истории, можно реконструировать события прошлого – недавнего и далекого. Древнейшие ПОП наших генов могут относиться к тому времени, когда мы еще не были людьми.
Происходит это, в частности, тогда, когда естественный отбор благоприятствует разнообразию популяции в ее интересах.
Предположим, есть две группы крови, A и B, и каждая обеспечивает иммунитет к разным заболеваниям. Каждая группа крови восприимчива к тому заболеванию, против которого у другой группы крови есть иммунитет. Заболевание распространяется в том случае, когда в популяции широко распространены носители восприимчивой к ней группы крови: в этом случае может начаться эпидемия. Поэтому, если в популяции преобладают люди, например, с группой крови B, заболевание легко перерастет в эпидемию. В результате люди с группой крови B будут умирать, пока их не станет совсем мало, а людей с группой крови А – соответственно, много. Если существует два типа какого-либо признака, более редкому из которых благоприятствует отбор просто в силу его редкости, это и есть рецепт полиморфизма: поддержание разнообразия ради разнообразия. Система групп крови АВ о – всем известный полиморфизм, который, возможно, сохраняется именно по указанным причинам.
Некоторые полиморфизмы могут быть довольно стабильными – настолько стабильными, что они передаются от предкового вида дочернему. Удивительно, но наш полиморфизм АВ о есть и у шимпанзе. Может статься, что мы с шимпанзе “изобрели” его независимо по одной и той же причине. Но, скорее всего, мы унаследовали его от общего предка и сохранили в течение 6 млн лет независимого развития, поскольку все это время соответствующие заболевания никуда не исчезали. Это межвидовой полиморфизм, и он наблюдается у видов куда более далеких, чем мы и шимпанзе.
Потрясающе: в отношении некоторых генов мы ближе к шимпанзе, чем к людям. Я, например, могу оказаться ближе к отдельным шимпанзе, чем к вам (или вашему шимпанзе). Человек как вид и как особь – лишь временный сосуд с генами. Индивид – остановка на перекрестке путей, которыми гены идут сквозь историю. Именно так можно выразить основную идею моей книги “Эгоистичный ген”. Там я писал: “После того как мы выполнили свою задачу, нас выбрасывают. Но гены – выходцы из геологического времени, они здесь навеки”. Однажды я выразил эту идею в стихах:
- Ген-странник мне сказал:
- “Тел много я видал.
- Не будь таким беспечным:
- Я существую вечно,
- А ты – всего лишь тело
- Для выживанья гена”.
А в ответе тела я спародировал “Песнь датчанок” Киплинга:
- Что тело – если ты покидаешь его,
- Проведя в нем короткий миг.
- И уходишь туда, где тебя одного
- Ждет старый слепой часовщик…
Мы назначили рандеву № о несколько десятков тысяч лет назад, максимум – несколько сотен тысяч лет назад. Туда мы еще не дошли. Следующее рандеву, где мы встретимся с шимпанзе, случилось на много миллионов лет раньше, а большинство рандеву вообще в сотнях миллионов лет от нас. Чтобы вовремя завершить паломничество, нужно поспешить. Мы, не останавливаясь, минуем около тридцати ледниковых периодов, типичных для последних 3 млн лет, и минуем эпохи перемен, когда пересыхало и снова наполнялось Средиземное море (4,5–6 млн лет назад). Когда нам захочется передохнуть, я воспользуюсь правом останавливаться в промежуточных точках, где мертвые ископаемые будут рассказывать нам истории. “Призраки” других пилигримов, с которыми мы встретимся, и их истории помогут нам удовлетворить законный интерес к собственным предкам.
Архаичный Homo sapiens
Первую остановку по пути к рандеву № 1 мы сделаем в позапрошлом ледниковом периоде – около 160 тыс. лет назад. Этот пункт я выбрал, чтобы осмотреть окаменелости из деревни Херто-Бури в Афарской котловине в Эфиопии. Люди из Херто интересны тем, что, по словам Тима Уайта и его коллег, относятся к “популяции, которая находится на грани анатомической современности, но при этом еще не совсем современна”. Выдающийся палеонтолог Кристофер Стрингер усматривает в образцах из Херто “самые древние достоверные находки… современных Homo sapiens”. Ранее такими находками считали образцы из более молодых окаменелостей Ближнего Востока, возраст которых оценивают более чем в 100 тыс. лет. Несмотря на незначительность различий между “современным” и “почти современным” человеком, ясно, что ископаемые из Херто находятся на границе между современными людьми и теми их предшественниками, которых мы знаем под общим названием “архаичный H. sapiens”. Некоторые авторитетные ученые отодвигают границу до 900 тыс. лет назад, где “архаичный H. sapiens” переходит к более древнему виду – человек прямоходящий (H. erectus). Другие авторы, как мы увидим, дают промежуточным архаичным формам латинские названия. Я же, предпочитая держаться в стороне от этих споров, буду использовать названия, которые предложил Джонатан Кингдон: человек современный, архаичный, прямоходящий и так далее. Не стоит ждать, что мы сможем развести раннего архаичного человека с его предком – человеком прямоходящим, или архаичного человека с произошедшим от него ранним современным человеком.
Архаичные формы существовали наряду с современными еще ioo тыс. лет назад – и даже дольше, если считать неандертальцев (о которых мы поговорим после). Окаменелые остатки архаичных людей находят по всему миру, и их датируют периодом последних нескольких сотен тысяч лет. К ним относятся, например, гейдельбергский человек (из Германии), родезийский человек (из Замбии, которая раньше называлась Северной Родезией) и “человек из Дали” (Китай, пров. Шэньси). У архаичных людей, как и у нас, был большой мозг: его объем составлял в среднем 1200–1300 см3. Это немного меньше, чем средний объем нашего мозга (1400 см3), но диапазоны объема заметно перекрываются. Тело у них было крепче нашего, кости черепа толще, надбровные дуги выступали сильнее, а подбородок практически отсутствовал. Они были сильнее, чем мы, похожи на человека прямоходящего и могут справедливо считаться промежуточным звеном. Некоторые таксономисты считают их подвидом H. sapiens и называют H. sapiens heidelbergensis (мы в этом случае оказываемся H. sapiens sapiens). Другие вообще не относят архаичного человека к H. sapiens, а называют его H. heidelbergensis. Есть и такие, кто выделяет несколько видов архаичного человека: например H. heidelbergensis, H. rhodesiensis и H. antecessor. Было бы странно, если бы классификация не порождала разногласия. С эволюционной точки зрения вполне предсказуемо существование диапазона промежуточных форм.
Современный H. sapiens sapiens – не единственная ветвь архаичного человека. Неандертальцы большую часть доисторической эпохи являлись нашими современниками. В некоторых отношениях они были сильнее похожи на архаичных людей, чем на нас, и по всей видимости произошли от архаичного человека 100–200 тыс. лет назад – но не в Африке, а в Европе и на Ближнем Востоке. Найденные там окаменелости демонстрируют постепенный переход от архаичного человека к неандертальцу, причем первые несомненные остатки неандертальцев имеют возраст около 130 тыс. лет – как раз перед началом последнего ледникового периода. В течение почти всего этого холодного времени они жили в Европе и вымерли около 28 тыс. лет назад. Иными словами, неандертальцы были ровесниками европейских мигрантов из Африки. Некоторые ученые полагают, что современный человек стал причиной вымирания неандертальцев – он либо убивал их, либо конкурировал с ними.
Анатомия неандертальцев довольно сильно отличалась от нашей, поэтому их иногда выделяют в самостоятельный вид – H. neanderthalensis. Они сохранили некоторые черты архаичного человека, например развитые надбровные дуги, которых нет у современного человека (на этом основании некоторые авторы считают неандертальца формой архаичного человека). Среди приспособлений неандертальца к холодному климату – плотное, коренастое телосложение, короткие конечности и огромный нос. Кроме того, они наверняка тепло одевались – по-видимому, в шкуры животных. Мозг неандертальцев был не меньше нашего, а то и крупнее. Некоторые данные указывают на то, что они хоронили умерших. Неизвестно, умели ли неандертальцы говорить, и по этому важному вопросу есть разные мнения. Археологические данные указывают на то, что неандертальцы и современные люди вполне могли обмениваться техническими идеями, однако это могло происходить без участия речи, просто путем подражания.
В нашем паломничестве рассказывать истории могут лишь современные нам животные. Исключение мы сделаем для дронта и моа, которые жили в историческое время, а также для окаменелостей H. erectus и H. habilis. Их можно назвать “призрачными странниками”, поскольку с высокой вероятностью они – наши прямые предки.
Рассказ Неандертальца[5]
Являемся ли мы потомками неандертальцев? Да, если они скрещивались с представителями H. sapiens sapiens. Но так ли это? Они долго жили бок о бок в Европе и, конечно, контактировали. Но выходило ли это общение за рамки шапочного знакомства и унаследовали ли современные европейцы какие-то гены неандертальцев, – это тема споров, которые с новой силой разгорелись после того, как ученым удалось выделить ДНК из костей поздних неандертальцев. Пока им удалось выделить лишь митохондриальную ДНК, которая наследуется по материнской линии, но для предварительных выводов и этого достаточно[6]. Митохондрии неандертальцев довольно сильно отличаются от митохондрий ныне живущих людей. Это позволяет предположить, что неандертальцы похожи на европейцев не больше, чем на представителей любых современных народов. Иными словами, общий предок неандертальцев и всех ныне живущих людей по материнской линии гораздо старше Митохондриальной Евы (140 тыс. лет): его возраст около 500 тыс. лет. Поэтому успешное скрещивание неандертальцев с современными людьми было, скорее всего, редкостью. О неандертальцах часто говорят, что они вымерли, не оставив потомков.
Но не забывайте о феномене 80 % (см. “Рассказ Тасманийца”). Иммигрант, которому удалось бы стать частью размножающейся тасманийской популяции, с 80-процентной вероятностью мог стать общим предком, то есть человеком, который может назвать себя предком всех тасманийецев, живущих в далеком будущем. И если бы хоть один неандерталец-мужчина скрестился с женщиной H. sapiens, с довольно высокой вероятностью он мог стать общим предком всех ныне живущих европейцев. Это верно даже в том случае, если у европейцев нет ни одного неандертальского гена. Удивительно!
Несмотря на то, что у нас почти нет неандертальских генов, вполне возможно, что у некоторых людей было много предков-неандертальцев. Именно в этом разница между родословными генов и людей (см. “Рассказ Митохондриальной Евы”). Эволюция определяется переносом генов, и мораль “Рассказа Неандертальца” в том, что мы не можем (и не должны) рассматривать эволюцию сквозь призму родословных тех или иных людей. Конечно, во всех других отношениях люди важны, но если мы говорим о родословных, то имеем в виду гены. Словосочетание “эволюционный предок” относится к генным, а не генеалогическим предкам.
Разнообразие ископаемых – тоже отражение генных, а не генеалогических родословных (разве что случайно). Окаменелости указывают на то, что анатомия современного человека распространилась по миру благодаря эмиграции из Африки. Однако исследование Алана Темплтона (см. “Рассказ Митохондриальной Евы”) позволяет предположить, что мы отчасти “происходим” от неафриканского архаичного человека и, возможно, даже от неафриканского H. erectus. Гены, определяющие нашу анатомию, были вынесены из Африки (об этом свидетельствуют окаменелости). В то же время приведенные Темплтоном факты говорят о том, что другие гены, принадлежащие нам сейчас, передвигались по миру другими маршрутами, но почти не оставили анатомических улик. Большинство наших генов, видимо, следовало маршрутом недавних миграций из Африки, и лишь небольшая часть генов попала к нам иначе.
Человек работающий
Мы делаем остановку 1 млн лет назад.
Единственные подходящие кандидаты этого возраста относятся к таксону Homo erectus, хотя некоторые авторы выделяют его африканский подвид H. ergaster – человек работающий. По-моему, большинство наших генов происходят от африканской формы. К тому же эти формы были не более прямоходящими, чем их предшественники (Homo habilis) или их преемники (мы). Человек работающий жил от 1,8 млн до 250 тыс. лет назад. Его признают непосредственным предшественником и частично современником архаичных людей, которые, в свою очередь, предшествовали нам, современным людям.
Представители H. ergaster заметно отличались от современных H. sapiens и, в отличие от архаичных sapiens, по некоторым признакам совсем не перекрывались с нами. Находки окаменелостей указывают на то, что они жили на Ближнем и Дальнем Востоке, включая Яву, и были эмигрантами из Африки. Вы, возможно, знаете их как питекантропа (Pithecanthropus) и синантропа (Sinanthropus). Как и мы, они передвигались на двух ногах, но мозг у них был меньше (900 см3 у ранних форм, 1100 см3 – у поздних) и располагался в менее выпуклом, более низком и покатом (по сравнению с нашим) черепе. Подбородок у них был скошенным. Выступающие надбровные дуги образовывали резко выраженный горизонтальный выступ над глазами, а лицо было широким, с приплюснутым лбом.
Волосы не подвергаются фоссилизации, поэтому мы не можем обсудить здесь вопрос о том, что в какой-то момент мы утратили большую часть волосяного покрова, сохранив лишь пышную растительность на голове. Скорее всего, человек работающий был по сравнению с нами более волосат, но нельзя исключать и возможность того, что уже 1 млн лет назад он утратил почти все волосы. Возможно, человек работающий был почти безволосым, как мы. Или, напротив, косматым, как шимпанзе. Реконструируя образ человека работающего, можно придать ему любую степень волосатости. Даже современные люди (по крайней мере мужчины) довольно сильно различаются по количеству волос на теле. Волосатость – это один из признаков, выраженность которых может неоднократно увеличиваться или уменьшаться в процессе эволюции. Рудиментарные волосы и связанные с ними вспомогательные клеточные структуры, которые остаются даже в самой голой на вид коже, могут легко превратиться в настоящую густую шерсть или снова стать незаметными, пока естественный отбор не призовет их на службу. Вспомните, например, о мамонтах и шерстистых носорогах, которые так быстро эволюционировали во время последних ледниковых периодов в Евразии. В “Рассказе Павлина” мы вернемся к вопросу о том, как человек лишился волосяного покрова.
Остатки очагов позволяют предположить, что по крайней мере некоторые группы людей работающих научились пользоваться огнем. Правда, доказательства этого не так убедительны, как хотелось бы. Почернения от сажи и древесного угля сохраняются не так уж долго, зато огонь оставляет другие, более стойкие, следы. Ученые реконструировали очаги различных типов и изучали то, что остается после них. Оказалось, что очаги намагничивают почву особым образом, отличным от того, который наблюдается при лесных пожарах и выгорании стволов деревьев – я не знаю, почему. Однако это свидетельсвует о том, что человек работающий разводил костры уже около 1,5 млн лет назад и в Африке, и в Азии. Это не обязательно значит, что он знал, как зажечь огонь. Возможно, он начал с того, что научился заботиться о нем, как заботятся о тамагочи. Возможно, еще до того, как научиться готовить пищу на огне, костер использовали, чтобы отпугнуть животных, получить свет и тепло – или просто как место для встреч.
Кроме того, люди работающие изготавливали каменные и, судя по всему, деревянные и костяные инструменты. Неизвестно, умели ли они говорить: доказательства этого довольно трудно отыскать. Вам, наверное, может показаться, что “довольно трудно” – это еще мягко сказано, но мы уже достигли того пункта своего путешествия, когда окаменелости начинают говорить. Точно так же, как очаги оставляют следы в почве, необходимость говорить требует изменений скелета: они не столь существенны, как костяной барабан в горле обезьян-ревунов, усиливающий их громоподобные крики, но все же вполне красноречивые, и их можно найти у некоторых ископаемых. К сожалению, признаки, которые удалось обнаружить, оказались недостаточно красноречивы, так что вопрос остается открытым.
Две области мозга современного человека считаются связанными с речью: зона Брока и зона Вернике. На каком этапе нашей истории увеличились эти участки? Самый разумный подход к изучению окаменелостей мозга – это метод дополнения, описанный в “Рассказе Человека работающего”. К сожалению, линии, разделяющие области мозга, при фоссилизации сохраняются недостаточно хорошо. Однако, по мнению некоторых экспертов, речевые зоны мозга увеличились еще 2 млн лет назад. Это должно понравиться тем, кто хочет верить, что человек работающий обладал даром речи.
Однако им вряд ли понравятся данные, полученные при изучении остального скелета. Самый полный известный нам скелет H. ergaster принадлежит “мальчику с озера Туркана” в Кении, умершему около 1,5 млн лет назад. Строение его ребер и небольшой размер отверстий в позвонках, через которые проходят нервы, показывают, что он не слишком хорошо контролировал дыхание – а это, похоже, связано с речью. Другие ученые, изучая основание черепа, заключили, что даже неандертальцы, жившие лишь 60 тыс. лет назад, еще не умели говорить: форма гортани не позволяла им воспроизводить полный диапазон известных нам гласных. С другой стороны, как заметил лингвист и эволюционный психолог Стивен Пинкер, “рачь с малам калачаствам гласнах мажат аставатьса дастатачна варазатальнай”. Если письменный иврит вполне можно разобрать и без гласных, я не вижу причин, почему это не могло работать и с разговорным неандертальским языком или даже языком человека работающего. Филип Тобиас, антрополог из Южной Африки, допускает, что язык старше даже H. ergaster. Некоторые ученые, как мы видели, придерживаются противоположных взглядов и датируют возникновение речи Великим скачком – то есть несколькими десятками тысяч лет.
Возможно, это один из тех споров, которые никогда не кончатся. Все споры о возникновении языка начинаются с цитирования решения Парижского лингвистического общества: в 1866 году оно сочло этот вопрос не имеющим ответа и запретило своим членам полемику. Вопрос, конечно, непростой, но нельзя сказать, что он в принципе не имеет ответа, как и некоторые философские проблемы. Во всем, что касается научной мысли, я – оптимист. Вопрос о дрейфе континентов решен раз и навсегда на основе убедительных доказательств, а по ДНК можно точно установить источник пятна крови с уверенностью, о которой когда-то судебные эксперты могли только мечтать. И я жду, когда ученые откроют некий чудесный метод, и мы узнаем, когда предки заговорили.
Однако я не надеюсь, что мы когда-либо поймем, что именно они говорили, или поймем их язык. Мы не узнаем, что было в самом начале: простые слова безо всякой грамматики, как лепет младенца? Или грамматика появилась достаточно рано либо даже внезапно (не такое уж глупое предположение)? Может быть, грамматические навыки давно были скрыты в мозге и просто использовались для чего-нибудь другого, например мысленного планирования. А может быть, даже грамматика (по крайней мере ее часть, которая относится к коммуникации) была внезапным озарением? Я в этом сомневаюсь, но в этой области ничего нельзя исключать с уверенностью.
Недавно появились многообещающие генетические данные, которые могут чуть ближе подвести нас к пониманию того, когда возник язык. Семья (назовем ее KE) страдает от необычного наследственного заболевания. Примерно половина из тридцати членов семьи (более трех поколений) нормальны, а у половины наблюдается любопытный языковой дефект, который, судя по всему, затрагивает способность как к воспроизведению, так и к распознаванию речи. Этот дефект назвали вербальной диспраксией. В детстве он проявляется как неспособность к четкой артикуляции. Некоторые считают, что причина проблемы – в “словесной слепоте”, подразумевая под этим неспособность выделять определенные грамматические свойства, например род, время и число. Достоверно известно лишь, что этот дефект обусловлен генетически. У людей он определяется мутацией гена FoxP2. Как и большинство наших генов, свои версии FoxP2 есть у мышей и других видов, у которых он, вероятно, выполняет различные функции в мозге и других органах. У людей, как видно на примере KE, ген FoxP2 важен для развития зоны мозга, связанной с речью.
Нам, конечно, хотелось бы сравнить человеческую версию FoxP2 с версией животных, не обладающих даром речи. Гены можно сравнивать либо по последовательностям ДНК, либо по последовательностям аминокислот в белках, которые они кодируют. В некоторых случаях это имеет значение. Ген FoxP2 кодирует аминокислотную цепь длиной 715 аминокислот. Версии гена мыши и шимпанзе отличаются одной аминокислотой. Человеческая версия отличается от обоих дополнительно двумя аминокислотами. Понимаете? Хотя людей и шимпанзе объединяет совместная эволюция и большая часть генов, FoxP2, судя по всему, эволюционировал особенно быстро за небольшое время, прошедшее с момента разделения людей и шимпанзе. А одно из важнейших свойств, которым мы отличаемся от шимпанзе, – у нас есть речь, а у них – нет. Ген, который изменился по пути к нам, после отделения людей от шимпанзе, – это как раз то, что нам нужно для понимания эволюции языка. Именно этот ген мутировал в злополучной семье КЕ. Возможно, именно благодаря мутации FoxP2 у людей и появилась способность к речи, отсутствующая у шимпанзе. Может быть, у человека работающего была мутированная версия FoxP2?
Если бы можно было использовать эту генетическую гипотезу, чтобы понять, когда у наших предков появилась речь! Пока мы не можем сделать это с уверенностью. Самый очевидный подход – попытка подсчитать возраст гена FoxP2 методом триангуляции, исходя их его вариантов у современных людей. Однако, за исключением редких горемык, таких как KE, среди людей не наблюдается вариативности ни по одной из аминокислот FoxP2. Таким образом, для триангуляции нам не хватает вариативности гена FoxP2. Однако, к счастью, есть и другие участки гена, с которых никогда не синтезируется белок, и которые могут мутировать незаметно для естественного отбора. Эти “молчащие” буквы кода находятся в участках гена, которые никогда не подвергаются трансляции и которые называют интронами (в противоположность экзонам: с них экспрессируется белок и поэтому их “видит” естественный отбор). Молчащие участки, в отличие от экспрессирующихся, довольно сильно различаются как у людей, так и у людей и шимпанзе. Для лучшего понимания эволюции гена мы можем посмотреть на вариабельность “молчащих” участков. Хотя сами “молчащие” участки не подвергаются естественному отбору, их может затрагивать отбор соседних экзонов. Более того, математический анализ вариабельности молчащих интронов дает представление о том, когда наблюдалось наибольшее давление естественного отбора. В случае FoxP2 ответ гласит: менее 200 тыс. лет назад. Изменение человеческой версии FoxP2, поддержанное естественным отбором, примерно совпадает по времени с переходом от архаичного H. sapiens к анатомически современному H. sapiens. Может быть, именно тогда зародился язык? Допустимая погрешность в таких вычислениях высока, однако это хитроумное генетическое свидетельство можно использовать для опровержения теории о том, что H. ergaster умел говорить. И, что для меня особенно важно, этот неожиданно открытый метод заставляет меня верить, что однажды ученые переубедят пессимистов из Парижского лингвистического общества.
H. ergaster – первый встретившийся нам ископаемый предок, который однозначно не принадлежит к нашему виду. Вскоре нам предстоит преодолеть участок пути, на котором самые важные данные мы будем получать от окаменелостей. Важность ископаемых будет расти (хотя никогда не перевесит молекулярные данные), пока мы не доберемся до времен, от которых почти не осталось ископаемых. Так что самое время понять, как формируются окаменелости.
Рассказ Человека работающего
Ричард Лики очень трогательно рассказывает, как его коллега Камойя Кимеу 22 августа 1984 года нашел “мальчика с озера Туркана” (Homo ergaster). Возраст его – 1,5 млн лет, и это древнейший из известных скелетов гоминид, сохранившийся почти полностью. Не менее трогательно Дональд Джохансон описывает обнаружение еще более древнего и поэтому хуже сохранившегося скелета австралопитека, который известен под именем Люси. Достойно внимания и открытие Stw 573 (Little Foot), еще не до конца описанного. Мы не знаем, что позволило “Люси”, Stw 573 и “мальчику с озера Туркана” обрести своего рода бессмертие. Было бы здорово, если бы в свое время то же самое произошло с нами. Как вообще формируются окаменелости?
Горные породы сложены из кристаллов, хотя часто они слишком мелкие, чтобы их можно было разглядеть невооруженным глазом. Кристалл представляет собой гигантскую молекулу, атомы которой располагаются в узлах решетки. Узор решетки повторяется миллиарды раз. Атомы выстраиваются на растущем краю кристалла из жидкости (обычно это вода, в некоторых случаях – сам расплавленный минерал). Форма кристалла и углы пересечения его граней повторяют в большем масштабе строение атомной решетки. Иногда проекция может быть по-настоящему крупной – например в алмазе или аметисте, грани которых выдают трехмерную структуру самоорганизованной атомной решетки. Однако обычно кристаллические единицы, из которых сложены породы, слишком малы – поэтому, в частности, большинство горных пород непрозрачны. К самым важным и распространенным кристаллическим породам относятся кварц (диоксид кремния), полевые шпаты (в основном тоже диоксид кремния, но некоторые из атомов кремния в них заменены на атомы алюминия) и кальцит (карбонат кальция). Гранит – плотно упакованная смесь кварца, полевого шпата и слюды, которая кристаллизуется из магмы. Известняк – это в основном кальцит, песчаник – в основном кварц. В обоих случаях тонкие перемолотые слои затем спрессовываются из отложений песка или ила.
Вулканические породы образуются из остывающей лавы (которая, в свою очередь, является расплавленной породой). Зачастую, как в случае гранита, они бывают кристаллическими. Иногда они могут выглядеть как стекловидная затвердевшая жидкость, а иногда, если сильно повезет, расплавленная лава застывает в “форме для отливки”, например в следе динозавра или пустом черепе. Однако главная польза от вулканических пород для ученых, изучающих историю жизни на земле, заключается в датировании. Мы узнаем из “Рассказа Секвойи”, что лучшие методы датирования применяются лишь для вулканических пород. Сами окаменелости обычно нельзя датировать точно, однако всегда можно поискать поблизости вулканические породы. Тогда мы либо считаем, что окаменелость и порода – ровесники, либо ищем два поддающихся датированию образца вулканической породы, между которыми залегает окаменелость, и устанавливаем верхнюю и нижнюю границы ее возраста. “Бутербродный” метод датирования отчасти рискованный, поскольку труп мог переместиться в другое место из-за наводнения или, например, его могли перетащить гиены или динозавры. К счастью, обычно это видно. Если же нет, приходится прибегать к сопоставлению с общими статистическими закономерностями распределения окаменелостей.
Песчаник, известняк и другие осадочные породы сложены из крошечных частиц, выветренных или вымытых водой из более древних пород или других твердых материалов, например раковин моллюсков. Эти частицы переносятся в составе взвеси – например песка, ила либо пыли, – постепенно спрессовываясь в новые слои породы. Большая доля окаменелостей обнаруживается в осадочных породах.
Осадочные породы устроены так, что вещества, их составляющие, подвергаются непрерывной рециркуляции. Древние горы, например Северо-Шотландское нагорье, подтачивают ветер и вода. Образовавшиеся частицы оседают и могут снова подняться в другом месте, например в молодых горах вроде Альп, и тогда цикл повторится. Учитывая этот круговорот, мы должны понимать, что невозможно сделать непрерывную палеонтологическую летопись, которая заполняла бы все пробелы в эволюции. Мы не всегда можем найти окаменелости, и это прямое следствие процесса образования осадочных пород. Наоборот, было бы подозрительно, если бы в летописи не было пробелов. Древние породы и хранящиеся в них окаменелости постоянно разрушаются.
Нередко окаменелости формируются в результате проникновения насыщенной минералами воды в ткани захороненного организма. При жизни кости пористые, и на то есть “технические” и “экономические” причины. Когда вода просачивается через поры мертвой кости, на ней медленно откладываются минералы. Впрочем, вспомните, как быстро в чайнике образуется накипь. (Однажды в Австралии я нашел на побережье крышку от бутылки, заключенную в камень.) Но обычно процесс все-таки медленный. Так или иначе, образуется окаменелость в форме исходной кости, и эту окаменелость мы находим миллионы лет спустя, даже если (не всегда) от кости не осталось ни единого первоначального атома. Окаменелый лес в национальном парке Петрифайд-Форест (Аризона) состоит из деревьев, ткани которых медленно заменялись кварцем и другими минералами из грунтовых вод. Эти деревья мертвы уже 200 млн лет, они окаменели, но мы до сих пор можем рассмотреть их клетки.
Иногда исходный организм или его часть оставляет естественную форму или отпечаток. Сам организм впоследствии исчезает из этой формы или разлагается. Я с удовольствием вспоминаю два прекрасных дня в 1987 году в Техасе, в долине реки Пелекси, где я рассматривал следы динозавра на гладком известняке и даже ставил в них ноги. Местная легенда гласит, что некоторые из этих следов принадлежат гигантскому человеку – современнику наследившего там динозавра. В соседнем городе Глен-Роуз бурно расцвел кустарный промысел: там весьма неуклюже изготавливают гигантские отпечатки ног человека в цементе – для продажи наивным креационистам, верящим, что “в те дни на земле жили исполины” (Бытие 6:4). Что касается настоящих следов, то их историю реконструировали. Трехпалые следы бесспорно принадлежат динозаврам. А следы, напоминающие след человеческой ноги, принадлежат динозаврам, которые ступали на пятки, а не на носки. Кроме того, через края следа, скорее всего, перетекала жидкая грязь, делая нечеткими отпечатки боковых пальцев. Еще больший интерес представляет находка в Лаэтоли (Танзания). Там обнаружились следы трех настоящих гоминид, вероятно Australopithecus afarensis, которые 3,6 млн лет назад прошли по еще свежему вулканическому пеплу. Кто из нас не задумается над тем, кем приходились эти люди друг другу? Держались ли они за руки? Может, даже разговаривали? И какое забытое ныне дело было у них в то плиоценовое утро?
Иногда (вспомните разговор о вулканической лаве) форма может заполняться каким-нибудь материалом, впоследствии затвердевающим и образующим слепок животного или части его тела. Я пишу эти строки в саду, на столе, столешница которого (квадратная двухметровая плита пятнадцатисантиметровой толщины) представляет собой кусок пурбекского известняка, возраст которого, возможно, составляет 150 млн лет[7]. Наряду со множеством окаменелых раковин моллюсков, на нижней поверхности этой плиты якобы (по словам одного известного эксцентричного скульптора, который добыл ее для меня) имеется след динозавра. Правда, след этот объемный, выступающий над поверхностью. Исходный отпечаток (при условии, что он настоящий – на мой взгляд, он не выглядит убедительно) должен был служить формой, в которой накапливались осадочные породы. Сама форма после этого исчезла. Большей частью знаний о мозге древних людей мы обязаны дошедшим до нас “отливкам” черепов. Нередко на них неожиданно четко отпечатывается поверхность мозга.
Иногда фоссилизируются и мягкие ткани животных, хотя не так часто, как раковины, кости или зубы. Самые известные места таких находок – сланцы Берджес в Канадских Скалистых горах и немного более древний палеонтологический парк Чэнцзян в Южном Китае (туда мы вернемся в “Рассказе Онихофоры”). И там, и там наряду с обычными “твердыми” ископаемыми найдены окаменелые остатки червей и других мягких беспозвоночных беззубых животных, которые относятся к кембрию (более 500 млн лет назад). Нам очень повезло, что существуют Чэнцзян и Берджес. Более того, как я уже говорил, нам очень повезло, что у нас вообще есть ископаемые. 90 % видов никогда не встретятся нам в виде ископаемых. Если это число справедливо для одного вида, подумайте, как мало людей могло стать окаменелостями! Согласно одной оценке, для позвоночного вероятность такого исхода составляет 1: 1000000. Мне это соотношение кажется даже преувеличенным, ну а для животных, не имеющих твердых органов, оно и того меньше.
Человек умелый
Если отступить от времени Homo ergaster еще на 1 млн лет в прошлое, у нас не останется сомнений в том, на каком континенте следует искать свои корни. Ученые (включая сторонников “мультирегионального” происхождения человека) согласны в том, что это – Африка. Самые убедительные находки костей указанного возраста обычно относят к H. habilis. Некоторые авторитетные ученые выделяют еще один современный ему вид – H. rudolfensis. Другие отождествляют его с кениапитеком, описанным Лики и его коллегами в 2001 году. Есть специалисты, которые вообще предпочитают не давать этим окаменелостям видовые названия, а просто относят их всех к “раннему Homo”. У меня нет по этому вопросу четкой позиции. Мне важнее люди из плоти и крови, и я буду называть их “умелыми”. Ископаемые остатки людей умелых старше, чем остатки людей работающих, и их сохранилось меньше. Череп самой хорошей сохранности имеет номер KNM-ER 1470. Его хозяин жил около 1,9 млн лет назад.
H. habilis столь же сильно отличался от человека работающего, как человек работающий – от нас самих. Существуют также промежуточные формы, которые довольно трудно классифицировать. Череп H. habilis был не таким прочным, как у человека работающего, а надбровные дуги не были так сильно выражены. В этом отношении H. habilis были похожи на нас, и это не удивительно. Прочность черепа и надбровные дуги, судя по всему, относятся к признакам, которые (например, волосы) гоминиды могут терять или приобретать по малейшему эволюционному поводу. Начиная с H. habilis, наш мозг увеличивался. Точнее, его размеры начали превышать средние размеры мозга других человекообразных обезьян – хотя и у них мозг уже был довольно крупным. Именно поэтому человека умелого относят к роду Homo. Для многих палеонтологов крупный мозг – отличительный признак нашего рода. H. habilis, объем мозга которого превысил 750 см3, перешел Рубикон и стал человеком.
Я не люблю “рубиконы”, “рубежи” и “промежутки”. В частности, нет оснований полагать, что ранний H. habilis отличался от предшественника сильнее, чем от преемника. Эта мысль может показаться здравой, потому что предшественник носит другое родовое название (австралопитек), а преемник (H. ergaster) – просто “другой Homo”. Конечно, если мы рассматриваем современные виды, мы ждем, что представители разных родов будут меньше похожи, чем представители разных видов в пределах одного рода. Однако в случае окаменелостей это не работает, потому что там имеется непрерывный ряд поколений. На границе между любым ископаемым видом и его непосредственным предшественником всегда найдутся особи, о которых можно спорить бесконечно. Потому что, если воспользоваться методом доведения до абсурда, окажется, что родители, принадлежащие к одному виду, породили потомство, принадлежащее уже к другому виду. Еще более нелепо предположение о том, что ребенок рода Homo появился у родителей совершенно другого рода – австралопитеков. Таким образом, в этой области науки об эволюции правила таксономии не работают.
Отказ от названий позволяет рассуждать о том, почему мозг внезапно начал расти. Как оценить увеличение мозга гоминид и построить график зависимости среднего размера мозга от геологического времени? С единицами времени проблем не возникает: это должны быть миллионы лет. С размером мозга сложнее. Ископаемые черепа и слепки позволяют оценивать размер мозга в кубических сантиметрах, которые потом довольно легко перевести в граммы. Однако нам не обязательно нужен абсолютный размер мозга. У слона мозг крупнее нашего, и тем не менее мы с полным правом считаем себя умнее. Мозг тираннозавра был ненамного меньше нашего, однако это не мешает считать динозавров глупыми: относительный размер нашего мозга больше.
Можно вносить поправку на абсолютный размер и выражать размер мозга как функцию от размера, который “должен” иметь мозг при данном размере тела. Эта тема достойна отдельного рассказа.
Рассказ Человека умелого
Итак, мы хотим оценить размер мозга животного – например Homo habilis: больше он или меньше, чем “должен быть” при данном размере тела? Мы допускаем (я – не очень охотно, но так и быть), что у крупных животных мозг должен быть крупным, а у малых – маленьким. Мы, тем не менее, желаем знать, бывают ли одни виды “мозговитее” других. Как рассчитать поправку на размер тела? Нам нужно сформулировать разумный принцип, согласно которому мы сможем вычислить прогнозируемый размер мозга животного на основе размера его тела. И тогда мы сможем сопоставить реальный размер мозга с прогнозируемым.
Эти вопросы могут относиться к любой другой части тела. Бывает ли так, что сердца, почки или лопатки у некоторых животных крупнее (или мельче), чем должны быть? Если да, то можно предположить, что их образ жизни требует специального размера сердца (почки, лопатки и так далее). Нам известен общий размер его тела. При этом не забывайте, что “должен быть” в данном случае не означает “необходим по функциональным причинам”. Это означает “прогнозируемый размер, полученный на основе сравнения с похожими животными”. Поскольку это “Рассказ Человека умелого”, а самая замечательная черта H. habilis – его мозг, то обсуждать этот вопрос мы будем на примере мозга. Но это не помешает нам получить более общие выводы.
Начнем с диаграммы рассеяния массы мозга относительно массы тела для большого количества видов. Каждый символ на графике (его построил мой коллега, выдающийся антрополог Роберт Мартин) обозначает один современный вид млекопитающих – всего их на графике 309, и расположены они от меньшего к большему. (H. sapiens – значок со стрелкой, а значок рядом – это дельфин.) Жирная линия, соединяющая точки, представляет собой прямую, которая, согласно статистическим расчетам, максимально приближена ко всем точкам.
Логарифмическое соотношение массы головного мозга и тела у различных видов плацентарных млекопитающих. Закрашенные треугольники обозначают приматов. Стрелкой обозначен человек. Martin [185].
Небольшое затруднение, смысл которого сейчас станет понятен, заключается в том, что обе шкалы графика лучше делать логарифмическими. Именно так построен этот график. Здесь видна зависимость логарифма массы мозга животного от логарифма массы его тела. Логарифмическия шкала означает, что шаги, отложенные по горизонтальной (или вертикальной) оси, представляют собой значения, умноженные на некоторое число, например на десять, а не просто последовательный ряд значений. Логарифм с основанием десять удобен тем, что мы можем рассматривать его как количество нулей в числе. Если для того, чтобы получить массу слона, нужно умножить массу мыши на миллион, то это значит, что нужно прибавить к массе мыши шесть нулей, то есть нужно добавить шесть к логарифму первого, чтобы получить логарифм второго. На полпути между ними на логарифмической шкале – в трех нулях – находится животное, которое весит в тысячу раз больше мыши и в тысячу раз меньше слона: например человек. Круглые числа, например тысяча и миллион, легче для понимания. “Три с половиной нуля” лежат где-то между тысячей и десятью тысячами. Заметьте, что “на полпути” по отношению к нулям – это не то же самое, что “на полпути между” по отношению к граммам. В нашем случае это делается автоматически благодаря подсчету логарифмов чисел. Логарифмические величины применяют для интерпретаций простых арифметических величин.
Есть по меньшей мере три убедительных причины для использования логарифмической шкалы. Во-первых, это позволяет уместить на одном графике малую бурозубку, лошадь и синего кита без необходимости тратить тонны бумаги. Во-вторых, это позволяет работать с мультипликативными признаками. Мы не просто хотим узнать, что наш мозг крупнее, чем полагается при данном размере тела. Интересно узнать, что наш мозг, скажем, вшестеро больше, чем должен быть. Такие мультипликативные свойства можно увидеть непосредственно на графике. Для этого и нужны логарифмические шкалы. Третья причина труднее для понимания. Во-первых, на таких шкалах облако точек можно разместить вдоль прямой, а не кривой. Но дело не только в этом.
Представьте, что некий объект – сферу, куб или мозг – вы десятикратно увеличиваете, причем его форма должна остаться прежней. В случае сферы это значит, что ее диаметр увеличился в десять раз. В случае куба или мозга это значит, что в десять раз увеличились ширина, высота и длина. А что происходит с объемом? Он увеличится не в десять, а в тысячу раз. Можно сказать, что объем пропорционален одной трети длины и ее логарифму, умноженному на три.
Все это можно проделать не только с объемом, но и с площадью. Однако площадь увеличивается пропорционально длине, возведенной во вторую степень, а не в третью. (Не зря вторую степень называют квадратом, а третью – кубом.) Объем кусочка сахара определяет его количество и цену. Однако скорость растворения зависит от площади поверхности (это не так-то просто высчитать, потому что по мере растворения кусочка площадь его поверхности уменьшается медленнее, чем объем). Если мы равномерно увеличиваем объект, удваивая его длину (ширину и так далее), площадь поверхности умножается вдвое: 2 х 2 = 4. Если увеличить длину в 10 раз, площадь поверхности надо умножить в десять раз: 10 х 10 = 100 (то есть прибавить два нуля). Логарифм площади поверхности увеличивается пропорционально двойному логарифму длины, а логарифм объема – пропорционально тройному логарифму длины. Двухсантиметровый кусочек сахара будет содержать в восемь раз больше сахара, чем односантиметровый, но растворяться в чае он будет лишь вчетверо быстрее (по крайней мере сначала), потому что это зависит от площади поверхности, которая реагирует с чаем.
Теперь возьмем много кусочков сахара разного размера и построим диаграмму, где на горизонтальной оси отложена масса (она пропорциональна объему), а на вертикальной – начальная скорость растворения кусочка (которую мы полагаем пропорциональной площади). На нелогарифмическом графике точки расположены вдоль кривой. Эту линию трудно интерпретировать. Но если мы отложим на графике логарифм массы и логарифм начальной скорости растворения, картина получится информативнее. На каждое троекратное увеличение логарифма массы будет приходиться двукратное увеличение логарифма площади поверхности. В логарифмическом масштабе точки не расположены вдоль кривой: они распределятся вдоль прямой линии. Более того, угол наклона этой прямой составит два к трем, то есть на каждые два шага по оси площади будет приходиться три шага по оси объема. На каждое двукратное увеличение логарифма площади будет приходиться троекратное увеличение логарифма объема. Угол наклона прямой на двойном логарифмическом графике может быть и другим. Графики подобного рода наглядны, потому что угол наклона прямой позволяет почувствовать, как взаимодействуют объем и площадь. А объем, площадь и сложные отношения между ними чрезвычайно важны для понимания того, как устроены организмы и их части.
Я не так уж силен в математике, но и меня очаровали эти расчеты. Еще сильнее меня восхищает, что этот же принцип годится для любых других фигур – не обязательно куба и сферы, но и для сложных: животных и органов животных, например почек и мозга. Для этого нужно, чтобы изменение размера представляло собой пропорциональное увеличение или уменьшение без изменения формы. Это дает нечто вроде нулевой гипотезы, исходя из которой мы можем оценивать реальные размеры. Так, если тело одного животного десятикратно длиннее тела второго, то его масса будет больше в тысячу раз, но лишь при условии, что у них одинаковая форма. Однако форма тела, судя по всему, закономерно эволюционировала по мере движения от маленьких животных к большим, и сейчас мы увидим, почему.
Форма тела крупных и мелких животных неизбежно различается – хотя бы из-за соотношения площади и объема. Если бы мы сделали из землеройки слона, пропорционально ее увеличив и сохранив форму, она бы не выжила. Она стала бы в миллион раз тяжелее, а это породило бы множество проблем. Одни связаны с объемом (массой). Другие – с площадью поверхности. Третьи – с соотношением этих двух величин или другими факторами. Точно так же, как скорость растворения куска сахара зависит от площади его поверхности, у животного скорость теплоотдачи или испарения воды через кожу пропорциональна площади поверхности его тела. Однако скорость теплопродукции, судя по всему, сильнее зависит от числа клеток, которое, в свою очередь, является функцией от объема.
Землеройка размером со слона сохранила бы веретенообразные ножки, которые быстро подломились бы. Ее мышцы были бы слишком тонкими, ведь сила мышцы пропорциональна не ее объему, а площади поперечного сечения. Мышечное движение – суммарное движение миллионов крошечных волокон. Число волокон, которые можно “упаковать” в мышцу, зависит от площади ее поперечного сечения (линейный размер в квадрате). Но работа, которую должна выполнять мышца – например поддержка слона, – пропорциональна массе слона (линейный размер в кубе). Поэтому слону для поддержания тела необходимо пропорционально больше мышечных волокон, чем землеройке. Соответственно, поперечное сечение мышц слона должно быть большим, чем можно ожидать при простом увеличении масштаба. То же касается объема мышц. По разным причинам это правило относится и к костям. Именно поэтому у слонов и других крупных животных ноги толстые, как стволы деревьев.
Допустим, что животное размером со слона стократно крупнее землеройки. Если форма тела у них одинакова, то площадь поверхности кожи первого животного будет в 10 тыс. раз больше, чем у землеройки, а объем и масса тела – в миллион раз больше. И если сенсорные клетки будут распределены на коже таким же образом, у слона их будет в 10 тыс. раз больше – а значит, обслуживающая их область мозга должна пропорционально увеличиться. Всего у первого животного в миллион раз больше клеток, чем у землеройки, и ко всем им должны подходить капилляры. Сколько километров кровеносных сосудов у крупного животного? Посчитать это довольно сложно, мы займемся этим после. Пока достаточно понимания, что в подобных случаях всегда нужно учитывать правила соотношения объема и площади поверхности. И логарифмический график – это отличный способ интуитивного понимания таких вещей. Основной вывод таков: по мере того, как животные в процессе эволюции становятся крупнее или мельче, форма их тела предсказуемо изменяется.
К этому нас привели размышления о размере мозга. Нельзя сравнивать наш мозг с мозгом H. habilis, Australopithecus или любого другого вида, не делая поправку на размер тела. Для этого нам нужен некий индекс размера мозга, учитывающий поправку на размер тела. Причем мы не можем просто разделить размер мозга на размер тела, хотя уже это было бы лучше сравнения абсолютных размеров мозга. Лучший способ – это использование логарифмических графиков. Нужно построить на графике зависимость логарифма массы мозга от логарифма массы тела для животных разного размера. Отметки, скорее всего, будут располагаться на прямой – примерно так, как на графике выше. Если угол наклона прямой составит 1/1 (то есть размер мозга строго пропорционален размеру тела), это означает, что каждая клетка мозга может обслуживать определенное число клеток тела. Угол наклона 2/3 говорил бы, что мозг подобен костям и мышцам: для определенного объема тела (или количества клеток тела) необходима определенная площадь поверхности мозга. Так каков же угол наклона этой прямой?
Он находится примерно между 1/1 и 2/3. Лучше всего он соответствует 3/4. Почему? Это отдельная история, которую расскажет цветная капуста. (Мозг немного похож на цветную капусту, не так ли?)
График изменения во времени коэффициента энцефализации (EQ) для различных ископаемых. Время в миллионах лет отложено по логарифмической шкале. Результаты представлены с поправкой на угол наклона 3/4.
Но пока я скажу лишь, что угол наклона 3/4 характерен не только для мозга, но возникает у всех видов живых существ, включая растения – например цветную капусту. В “Рассказе Цветной капусты” мы ознакомимся с интуитивно понятным объяснением этого факта. Что касается размера мозга, то именно 3/4 мы будем использовать, говоря о “прогнозируемом” соотношении, о котором шла речь выше.
Хотя точки на графике группируются вокруг “прогнозируемой” прямой с углом наклона 3/4, с ней совпадают не все точки. Если точка на графике лежит выше прямой, можно сказать, что у животного “большой” мозг – то есть он крупнее, чем “прогнозируемый” при данном размере тела. Животные, у которых мозг меньше “прогнозируемого”, располагаются ниже прямой. Расстояние от точки до прямой говорит о том, насколько мозг животного больше или меньше “прогнозируемого”. Так, точка, лежащая непосредственно на прямой, обозначает животное, размер мозга которого точно равен прогнозируемому.
Когда выполняется это условие? Если животное является типичным представителем группы, для которой строился график. Допустим, график построен для выборки наземных позвоночных от геккона до слона. Если на графике млекопитающие расположены выше прямой (а рептилии – ниже), то это означает, что у млекопитающих мозг крупнее, чем “должен быть” у типичного позвоночного животного. Если теперь мы построим прямую для типичной выборки млекопитающих, она окажется параллельна прямой, построенной для позвоночных. Угол наклона такой же (3/4), однако абсолютная высота будет больше. Прямая, построенная для типичной выборки приматов (высших приматов), еще выше, но угол ее наклона также 3/4. И, наконец, выше всех лежит прямая для H. sapiens.
Мозг человека слишком велик даже по стандартам приматов. А средний мозг примата слишком крупный по стандартам млекопитающих. И, если уж на то пошло, мозг среднего млекопитающего слишком велик для позвоночных животных. Это можно изобразить так: разброс точек для позвоночных шире, чем разброс точек для млекопитающих. В свою очередь, разброс точек для млекопитающих шире, чем разброс для приматов. Или, например, облако точек, обозначающее неполнозубых (отряд южноамериканских млекопитающих, включающий ленивцев, муравьедов и броненосцев), на графике млекопитающих окажется ниже среднего значения.
Гарри Джерисон, стоявший у истоков работ по изучению мозга ископаемых животных, предложил использовать коэффициент энцефализации (Encephalisation Quotient, EQ). Он позволяет оценить отношение действительного размера мозга животного к прогнозируемому размеру мозга при данном размере тела. При этом животное должно принадлежать к многочисленной группе, например к позвоночным или млекопитающим. Это важно: чтобы проводить сравнения, нам нужно определить крупную группу, которая будет использоваться как линия отсчета. Коэффициент EQ для вида – это расстояние от соответствующей точки до средней линии определенной нами крупной группы. Джерисон, правда, думал, что угол наклона этой линии составляет 2/3, тогда как современные ученые сходятся на 3/4. Поэтому оценки EQ, сделанные Джерисоном, нуждаются в некоторых поправках – на это указывал Роберт Мартин. После этого выяснилось, что мозг современного человека примерно вшестеро больше, чем “должен быть” у млекопитающего такого размера. Заметьте, что значение EQ будет еще выше, если его рассчитать применительно ко всем позвоночным, а не только к млекопитающим. И, соответственно, он будет меньше, если рассчитать его для приматов.
Мозг современного шимпанзе примерно вдвое крупнее мозга типичного млекопитающего. Такого же размера мозг был у австралопитеков, H. habilis и H. erectus. Последние два вида, возможно, являются промежуточными между австралопитеками и нами. Размер мозга у них промежуточный. У обоих EQ составляет около 4, то есть их мозг примерно вчетверо больше, чем “должен быть” у млекопитающих такого размера.
На графике выше показаны значения EQ ископаемых приматов и питекантропов в зависимости от времени их существования. С некоторыми оговорками можно считать, что график иллюстрирует уменьшение мозга по мере движения в прошлое. В верхней части графика помещается современный H. sapiens с EQ = 6. Это значит, что наш мозг вшестеро тяжелее, чем у типичного млекопитающего нашего размера. В нижней части графика – ископаемые виды. Кто-то из них, возможно, представляет собой сопредка № 5 – нашего общего предка с обезьянами Старого Света. Их EQ оценивают около 1 – то есть мозг у них был как раз такой, какой полагается типичному млекопитающему их размера. И, наконец, в средней части графика находятся различные виды Australopithecus и Homo, которые вполне могли быть близкими родственниками наших предков. Прямая на графике, повторюсь, проведена так, что расстояние от нее до всех точек минимально.
Это верно с оговорками. Коэффициент EQ подсчитан на основе двух величин: массы мозга и массы тела. В случае ископаемых эти величины оценивают по дошедшим до нас фрагментам. Величина погрешности при этом может быть огромна, особенно при оценке массы тела. Точка на графике, которая относится к H. habilis, показывает, что он был “мозговитей”, чем H. erectus. Я этому не верю. Абсолютный размер мозга H. erectus бесспорно больше. И тот факт, что у H. habilis индекс EQ выше, объясняется предположительно тем, что масса тела у него была меньше. Чтобы почувствовать, насколько велика погрешность, вспомните, как сильно варьирует масса тела у современных людей. Коэффициент EQ чрезвычайно чувствителен к ошибкам при измерении массы тела. Ведь в формуле EQ массу тела, как вы помните, возводят в степень. Таким образом, разброс точек вдоль прямой во многом отражает просто изменчивость массы тела. С другой стороны, тенденция, на которую указывает прямая на графике, судя по всему, вполне реальна. Методы, о которых мы говорим, и особенно оценка EQ на графике, все-таки убеждают, что самое важное событие последних 3 млн лет эволюции – это увеличение мозга у приматов. И возникает вопрос: почему это произошло? Как давление отбора привело к увеличению мозга?
Поскольку это произошло после того, как мы встали на ноги, некоторые ученые предполагают, что увеличение мозга было обусловлено освобождением рук и необходимостью контроля над мелкой моторикой. В целом это довольно правдоподобно – но не более правдоподобно, чем некоторые другие теории. Однако увеличение человеческого мозга в масштабе эволюции выглядит как взрыв. Думаю, что и объяснение должно быть соответствующим. В книге “Расплетая радугу” я сформулировал теорию “коэволюции программно-аппаратных средств”, проведя аналогию с компьютерным “железом” и “софтом”. Совершенствование “софта” требует усложнения “железа”, а усложнение “железа” способствует совершенствованию “софта”. И скорость этого процесса становится все выше. Если говорить о мозге, то аналогами “софта” здесь выступают язык, выслеживание зверей по следам, работа с гончарным кругом и мемы. Одна из моих теорий, объясняющих рост мозга, касалась полового отбора. Тогда я не уделил должного внимания этому вопросу и здесь вернусь к нему.
Может быть, увеличенный человеческий мозг, или скорее плоды его работы, например нанесение рисунков на тело, эпос и ритуальные танцы – нечто вроде павлиньего хвоста? Эта идея всегда была мне симпатична, но никому до сих пор не приходило в голову оформить полноценную теорию. И вот наконец молодой эволюционный психолог Джеффри Миллер написал об этом книгу (Mating Mind). Мы обсудим его идею в “Рассказе Павлина”.
Обезьяночеловек
В популярной литературе встречается стремление найти “древнейшего предка человека”. Это глупо. Можно задать конкретный вопрос, например, “кто из предков человека раньше всех начал ходить на двух конечностях”, или “кто из древнейших наших предков не был одновременно предком шимпанзе, или “у кого из наших предков объем мозга впервые превысил 600 см3?” Хотя на эти вопросы довольно трудно ответить, они все же имеют смысл. Правда, они образуют искусственные разрывы в непрерывном течении эволюции, однако вопрос о том, “кто древнейший предок человека”, вовсе не имеет смысла.
Плохо другое: “гонка за предками человека” ведет к тому, что каждую обнаруженную окаменелость при малейшей возможности привязывают к “основной” эволюционной линии человека. Но по мере того, как археологи находят новые окаменелости, становится ясно, что на протяжении большей части истории эволюции в Африке одновременно жили несколько видов гоминид. А это значит, что многие ископаемые виды, объявленные нашими предками, на самом деле вроде наших двоюродных братьев.
С тех пор, как Homo впервые появился в Африке, ему неоднократно приходилось делить континент с более массивными гоминидами – возможно, с несколькими их видами. Как обычно, их родство и точное число видов вызывают споры. Вот названия, полученные некоторыми из них (см. график в конце “Рассказа Человека умелого”): Australopithecus (Paranthropus) robustus, Australopithecus (Paranthropus, Zmjanthropus) boisei и Australopithecus (Paranthropus) aethiopicus. Они, судя по всему, произошли от грацильных (противоположность – массивные) человекообразных обезьян. Грацильных человекообразных обезьян тоже относят к роду Australopithecus, так что мы почти наверняка происходим от грацильных австралопитеков. Иногда раннего Homo трудно отличить от грацильных австралопитеков. Именно поэтому я критиковал специалистов по систематике, которые разделили их на два рода.
Непосредственных предков Homo можно отнести к разновидности грацильных австралопитеков. Рассмотрим кое-какие окаменелости. Так, к “миссис Плез” я питаю особую любовь еще с тех пор, как Трансваальский музей в Претории подарил мне красивый слепок ее черепа. Случилось это полвека спустя после того, как ее остатки обнаружили недалеко от Стеркфонтейна – я тогда читал лекцию в честь Роберта Брума, ученого, который нашел “миссис Плез”. Она жила около 2,5 млн лет назад. Ее прозвище образовано от названия рода Plesianthropus, к которому ее сначала отнесли – к роду Australopithecus ее причислили после. А “миссис” она потому, что ее сочли самкой (теперь подозревают, что ошибочно). Ископаемым гоминидам часто достаются подобные прозвища. Существует и “мистер Плез”: его нашли чуть позднее в Стеркфонтейне, и он относится к тому же виду, что “миссис Плез” – Australopithecus africanus. Есть прозвища и у других окаменелостей, например “Щелкунчик” (OH 5) – это массивный австралопитек, также известный как “Зиндж” (сначала его относили к Zinjanthropus boisei), “Маленькая нога” (Stw 573), а также знаменитая “Люси”.
С “Люси” мы встречаемся, когда стрелка хронометра на нашей машине времени коснется деления 3,2 млн лет. Это еще один представитель грацильных австралопитеков. О “Люси” говорят так много потому, что вид, к которому она относится – Australopithecus afarensis, – является основным претендентом на звание предка человека. Дональд Джохансон с коллегами, обнаружившие “Люси”, нашли в той же местности окаменелости тринадцати похожих на нее особей, прозванных “Первая семья”. Другие “Люси” (3–4 млн лет) найдены в других частях Восточной Африки. Следы возрастом 3,6 млн лет, найденные в Лаэтоли Мэри Лики, приписывают A. afarensis. Вне зависимости от латинского названия, очевидно, в то время кто-то ходил на двух конечностях. “Люси” не очень-то отличается от “миссис Плез”, и некоторые ученые считают “Люси” “ранней версией” “миссис Плез”. Вообще они сильнее похожи друг на друга, чем любая из них – на массивных австралопитеков. У восточноафриканских “Люси”, говорят, был немного меньший мозг, чем у южноафриканской “миссис Плез”, но это не так важно. Размеры их мозга отличались не сильнее, чем мозг одного современного человека от мозга другого.
Как и следовало ожидать, “Люси” и другие поздние особи afarensis немного отличаются от самых ранних форм afarensis (3,9 млн лет). Различия накапливались. Выходя из машины времени 4 млн лет назад, мы встречаем больше существ, которые могли бы быть предками “Люси” и ее родичей, но которые достаточно отличались в направлении большей схожести с шимпанзе, чтобы заслужить собственное видовое название. Обнаруженные группой Мив Лики Australopithecus anamensis представлены более чем 80 ископаемыми с двух участков у озера Туркана. К сожалению, неповрежденных черепов не нашлось, зато была обнаружена прекрасная нижняя челюсть, которая вполне могла принадлежать нашему предку.
Но самым захватывающим открытием из этого периода (и достойным поводом для того, чтобы ненадолго остановиться) является ископаемое, до сих пор еще полностью не описанное. Скелет Stw 573 из пещер Стеркфонтейн был первоначально датирован около 3 млн лет, но недавно был датирован заново – немногим более 4 млн лет. Его открытие – часть детективной истории, достойной Конан Дойля. Фрагменты левой ноги Stw 573 были выкопаны в Стеркфонтейне в 1978 году и лежали незамеченными и немаркированными до 1994 года в ящике в сарае, используемом рабочими, возле пещеры Стеркфонтейн. Тогда палеонтолог Рональд Кларк, работавший под руководством Филипа Тобиаса, случайно открыл их заново. Три года спустя в кладовой Университета Витватерсранда Кларк наткнулся на другой ящик костей из Стеркфонтейна, обозначенный “Церкопитекоиды”. Кларк интересовался этой разновидностью обезьян, поэтому осмотрел коробку – и среди костей с радостью заметил кость ноги гоминида. Несколько костей ноги и ступни в коробке, казалось, соответствовали костям, найденным в сарае в Стеркфонтейне. Одна была половиной сломанной поперек правой берцовой кости. Кларк передал ее слепок двум ассистентам-африканцам, Нкване Молефе и Стивену Моцуми, и попросил, чтобы они отправились в Стеркфонтейн за второй половиной.
Задача, которую я им поставил, была похожа на поиски иголки в стоге сена, поскольку тот грот – огромная, глубокая, темная пещера с обломочной породой, выходящей на поверхность на стенах, полу и потолке. Третьего июля 1997 года, после двух дней поисков при свете фонарей, они нашли ее.
Подвиг Молефе и Моцуми более чем удивителен, потому что кость, которая соответствовала их слепку, нашлась
в противоположном конце грота, где мы вели раскопки. Соответствие было полным, несмотря на то, что кости были разбросаны добытчиками извести 65 или более лет назад. Слева от обнажившегося конца большой берцовой кости правой ноги можно было видеть обломок большой берцовой кости левой ноги, к которой можно было приставить нижний конец левой большой берцовой кости с костями ступни. Слева от нее был виден обломок малой берцовой кости левой ноги. Исходя из их положения – нижние конечности находились в правильном анатомическом порядке, – можно было предположить, что весь скелет должен был находиться там, лежащий лицом вниз.
На самом деле он был там не целиком, но после анализа геологических обрушений Кларк установил, где он должен быть. И зубило Моцуми наткнулось на него именно там, где предполагалось. Кларку и его команде действительно повезло, однако эта история великолепно подтверждает правило, которым руководствуются ученые, начиная с Луи Пастера: “Удача благоволит подготовленному уму”. Скелет Stw 573 еще предстоит полностью извлечь, описать и назвать, предварительные же данные указывают на то, что это выдающаяся находка, соперничающая в сохранности с “Люси” и при этом старше ее. Хотя Stw 573 больше похож на человека, чем на шимпанзе, большой палец ноги у него сильнее отставлен, чем у нас. Возможно, Stw 573 хватался ногами за ветки – мы это уже не умеем. Хотя почти наверняка он ходил на двух конечностях, вероятно, он лазил и по деревьям. Как и другие австралопитеки, он мог проводить часть времени на деревьях, подобно современным шимпанзе сооружая там спальные места.
Остановившись у четырехмиллионолетней отметки, окинем взглядом лежащий перед нами путь. Есть несколько фрагментарных останков, возможно, двуногого австралопитекоподобного существа (около 4,4 млн лет назад). Тим Уайт и его коллеги нашли его в Эфиопии довольно близко от последнего пристанища “Люси” и назвали Ardipithecus ramidus, хотя некоторые предпочитают относить его к роду Australopithecus. До сих пор не найден ни один череп ардипитека, но его зубы указывают на то, что он был сильнее похож на шимпанзе, чем любой из позднее живших людей. Эмаль его зубов была толще, чем у шимпанзе, но не такая толстая, как у нас. Несколько разрозненных черепных костей указывают, что череп покоился наверху позвоночной колонны, как у нас, а не спереди, как у шимпанзе. Это предполагает вертикальное положение тела, и найденные кости ног подтвержают предположение о двуногости ардипитека.
Двуногость отличает людей от остальных млекопитающих так кардинально, что, я чувствую, она заслуживает отдельного рассказа.
Рассказ Stw 573
Не думаю, что есть смысл придумывать причины, в силу которых ходить на двух ногах – это здорово. Будь так, шимпанзе делали бы то же самое, не говоря уже о других животных. Нет причины, по которой бег на двух или четырех конечностях быстрее или удобнее. Галопирующие животные могут быть на удивление быстры. Впрочем, страусы доказали, что передвигаться на двух ногах можно столь же эффективно, как и на четырех (лошади). Действительно, лучшие спринтеры среди людей, хотя и заметно уступают в скорости лошади или собаке (или страусу, или кенгуру, если на то пошло), не слишком от них отстают. А четвероногие обезьяны – не самые выдающиеся бегуны (вероятно, потому, что строение их тела должно идти на компромисс с потребностями лазальщика). Даже павианы, которые обычно кормятся на земле, спят и спасаются от хищников на деревьях. Но при необходимости они довольно быстро бегают.
Итак, когда мы спрашиваем, почему наши предки встали на задние ноги, и представляем себе четвероногую альтернативу, от которой мы отказались, не стоит сводить все к скорости. Предки, вставшие на две ноги, не получили особенного преимущества в эффективности или скорости. Естественный отбор, который привел нас к этому революционному изменению способа передвижения, воздействовал на что-то другое.
Шимпанзе и некоторых других четвероногих можно научить ходить на двух ногах. Они и самостоятельно нередко так передвигаются – во всяком случае, на короткие дистанции. Поэтому, вероятно, им было бы не так трудно – при наличии веских причин – переключиться на двуногое хождение. Орангутаны еще лучше шимпанзе справляются с ходьбой на двух ногах. Дикие гиббоны, чей самый быстрый способ передвижения – брахиация, то есть раскачивание на руках, – также преодолевают открытые участки на задних конечностях. Некоторые обезьяны приподнимаются на две ноги над высокой травой, чтобы осмотреться, или переходя вброд реку. Хохлатый индри, хотя он и живет в основном на деревьях, “танцует” по земле на задних ногах, балансируя передними поистине с балетным изяществом. Врачи иногда просят пациентов пробежаться на месте, надев на лицо специальную маску: так они измеряют расход кислорода и другие метаболические показатели при нагрузке. В 1973 году американские биологи Ч. Р. Тейлор и В. Дж. Роунтри проделали то же самое с дрессированными шимпанзе и капуцинами на беговой дорожке. Заставляя животных бежать то на четырех, то на двух конечностях (позволяя за что-нибудь держаться), исследователи сравнили потребление кислорода и эффективность двух видов бега. Ученые ожидали, что перемещение на четырех конечностях эффективнее. Ведь именно так оба вида передвигаются в естественных условиях, и именно к этому приспособлена их анатомия. Возможно, чистота эксперимента была искажена тем, что при беге на двух ногах животным позволяли держаться руками. Как бы то ни было, ученые не обнаружили заметной разницы между потреблением кислорода при беге на двух и на четырех ногах. Тейлор и Роунтри заключили, что “относительная энергозатратность при беге на двух ногах в сравнении с бегом на четырех не должна использоваться как аргумент в эволюции двуногого передвижения у человека”. Даже если это преувеличение, оно должно заставить нас искать другие преимущества перехода к двуногому передвижению. И мне кажется весьма подозрительным, что любые преимущества двуногости с нелокомоторной точки зрения, судя по всему, не вступали в противоречие с высокими локомоторными затратами.
Каковы преимущества двуногости с нелокомоторной точки зрения? Довольно соблазнительно звучит теория полового отбора, предложенная Максин Шитс-Джонстон из Орегонского университета. Согласно этой теории, люди поднялись на задние ноги для демонстрации пенисов – точнее, мужчины. Самки сделали то же самое, напротив, чтобы скрыть свои гениталии, которые у приматов заметнее при передвижении на четырех ногах. Это довольно любопытная идея, хотя я ее не поддерживаю. Я просто упомянул ее как пример того, что может подразумеваться под нелокомоторными преимуществами. Как бы то ни было, эта теория, как и многие другие, не объясняет, почему это коснулось лишь наших предков, а не других обезьян.
Другая группа теорий делает акцент на освобождение рук. Это действительно важное преимущество двуногости. Вполне возможно, что мы встали на задние ноги не потому, что так удобнее ходить, а потому, что это позволяло что-то делать руками – например нести пищу. Многие обезьяны питаются растительной пищей. Ее легко добыть, но она не очень питательна, поэтому приходится жевать на ходу более или менее непрерывно – как коровы. Мясо или крупные корнеплоды добыть труднее. Но такая еда питательнее и стоит затраченных сил. Поэтому имеет смысл не только съесть на месте сколько влезет, но еще и что-нибудь унести с собой. Когда леопард убивает жертву, первое, что он обычно делает, – затаскивает ее на дерево. Там туша в относительной безопасности от падальщиков, и к ней можно возвращаться и постепенно съедать. При этом леопард держит тушу мощными челюстями, потому что лапы нужны, чтобы влезть на дерево. У наших предков, заметьте, челюсти были гораздо меньше и слабее, чем у леопарда. Поэтому мне кажется вполне вероятным, что передвижение на двух ногах оказалось очень выгодным: у наших предков освободились руки, чтоб нести пищу – например, чтобы поделиться с самкой или с детьми, или обменяться с соседями, или припрятать на черный день.
Между прочим, два последних варианта могут быть ближе друг к другу, чем кажется. До изобретения морозилки лучшей кладовкой для мяса был живот товарища (эту гениальную формулу я приписываю Стивену Линкеру). Конечно, конкретный кусок мяса становился недоступным, но симпатия товарища оказывалась прекрасным долгосрочным вкладом. Он будет долго помнить услугу и отблагодарит вас. Шимпанзе, как известно, оказывают друг другу знаки внимания, обмениваясь кусками мяса. Уже в историческое время этот вид долговой расписки стал таким же обычным, как и деньги.
Одна из версий теории “доставки еды на дом” предложена американским антропологом Оуэном Лавджоем. Он предположил, что самкам было трудно искать еду из-за необходимости присматривать за детьми: они не могли надолго их оставить. Поэтому питались они довольно скудно, а значит, и молока у них вырабатывалось немного, что откладывало момент отнятия ребенка от груди. А кормящие самки бесплодны. Если же кормящей самке будет помогать самец, она быстрее выкормит ребенка и вернется к размножению. Причем в тот день, когда это произойдет, она с высокой вероятностью предпочтет того самца, который ей помогал. Таким образом, самец, который приносит в дом много еды, получает репродуктивное преимущество перед конкурентом, который все съедает сам.
В рамках других гипотез рассматриваются преимущества высокого роста. Возможно, люди приподнимались на задние ноги, чтобы осмотреться в высокой траве – или, например, переходя реку вброд. Вторая версия лежит в основе так называемой акватической теории. Эту теорию предложил Алистер Харди, но известность она обрела благодаря Элен Морган. Есть и другая теория, о которой говорит Джон Ридер в замечательной книге об Африке. Согласно этой теории, вертикальное положение тела позволяло минимизировать воздействие солнечных лучей, которые при таком положении падают на макушку (как следствие, она покрыта волосами). Кроме того, чем дальше тело от земли, тем быстрее оно может отдавать лишнее тепло.
Мой коллега, выдающийся художник и зоолог Джонатан Кингдон, посвятил вопросу эволюции двуногости целую книгу. В “Низком происхождении” он приводит увлекательный обзор 13 гипотез, в той или иной степени различных, а после выдвигает собственную теорию – сложную и многогранную. Кингдон не пытается отыскать прямую выгоду двуногого передвижения. Вместо этого он подробно перечисляет количественные анатомические изменения, возникшие по тем или иным причинам и облегчившие переход к двуногости (для такого рода изменений есть термин – преадаптация). Так, Кингдон говорит о преадаптации, которую он называет “питание на корточках”. Павианы, живущие на открытой местности, часто едят, сидя на корточках, и Кингдон предполагает, что подобное делали наши обезьяноподобные предки в лесу. Они могли переворачивать камни или ворошить листья в поисках насекомых, червей, улиток и чего-нибудь еще вкусненького. Чтобы делать это было удобнее, им пришлось частично отказаться от приспособлений к жизни на деревьях. (То есть особи, гены которых сделали ноги более подходящими для питания на корточках, передавали эти гены потомкам, потому что питание на корточках способствовало выживанию.) Их ноги, изначально похожие на руки и приспособленные к хватанию, постепенно становились все более плоскими и приобретали устойчивое основание для приседания на корточки. Вы, наверное, уже поняли, к чему я клоню. Уплощенные ступни, приспособленные для сидения на корточках, стали преадаптацией для вертикальной ходьбы.
Обезьяна, передвигающаяся по деревьям с помощью брахиации, образно говоря, ходит вверх ногами по веткам (а гиббон, известный своей ловкостью, – бегает и прыгает), используя руки как ноги, а плечевой пояс – в качестве таза. В эволюции наших предков, вероятно, был период брахиации, и поэтому их таз приобрел практически неподвижную связь с торсом через длинные костные гребни. В результате этого большая часть туловища утратила гибкость и стала двигаться как единое целое. В этой системе, согласно Кингдону, многое должно было измениться, чтобы наши предки смогли от брахиации перейти к эффективному питанию на корточках. Многое, но не все. Руки вполне могли оставаться такими же длинными. Ведь длинные руки, приспособленные к брахиации, могли стать безусловно выгодной преадаптацией: можно было много до чего дотянуться, а значит, не нужно было часто переходить с места на место. Однако тяжелое негибкое туловище с центром тяжести в верхней части при питании на корточках было явно неудобным. Поэтому таз стал более свободным, утратил неподвижную связь с торсом, а его гребни уменьшились и приобрели приблизительно человеческие пропорции. Предвосхищая последнюю часть этой логической цепочки (хотя именно в предвосхищении суть феномена преадаптации), можно сказать, что это случайность – то, что такой таз оказался более подходящим для передвижения на двух ногах. Талия стала более гибкой, а позвоночник – вертикальнее. Благодаря этому животное, которое кормится на корточках, могло дотянуться руками до всего, что его окружало, включая основание плоских стоп и согнутые ноги. Плечи стали легче, а центр тяжести тела опустился ниже. И вот эти-то едва уловимые количественные изменения и последовавшие умеренные сбалансированные физиологические изменения попутно “подготовили” тело к ходьбе на двух ногах.
Кингдон не пытается предвидеть будущее. Он просто указывает на то, что обезьяна, предки которой еще недавно лазали по деревьям, научилась кормиться на корточках на лесной подстилке. И тело ее при этом изменилось таким образом, что ей стало более или менее удобно передвигаться на задних ногах. И, скорее всего, она начала это делать как раз во время питания на корточках: собрав все на старом месте, она перемещалась на новое. Не отдавая себе в этом отчет, животные, собирая еду на корточках, из поколения в поколение готовили свои тела к тому, чтобы было удобно стоять на двух ногах. А передвижение на всех четырех, напротив, становилось все неестественнее. Я не зря использую слово “удобно”: мы вполне можем ходить на четвереньках, как типичное млекопитающее. Однако это тяжело и неудобно, потому что пропорции нашего тела к этому не приспособлены. Те изменения пропорций тела, благодаря которым нам сейчас удобно ходить на двух ногах, изначально появились, как считает Кингдон, для обслуживания незначительных изменений в особенностях питания.
Можно долго рассказывать о теории Кингдона, но я рекомендую вам прочесть его книгу. У меня, кстати, есть собственная теория возникновения двуногости. Она очень отличается от теории Кингдона, но вполне с ней совместима. Это касается и других теорий эволюции двуногости: большинство их вполне могут дополнять друг друга. Я предполагаю, что на эволюцию двуногости (как и на увеличение человеческого мозга) повлиял половой отбор. Поэтому рассмотрение этого вопроса мы отложим до “Рассказа Павлина”.
Какой бы теории происхождения двуногости мы ни придерживались, нельзя не признать, что это событие оказалось чрезвычайно важным. Еще недавно ничто не мешало нам верить в то, что решающим эволюционным событием, впервые поставившим нас на ступеньку выше других обезьян, было увеличение мозга. Именно эту точку зрения отстаивали многие уважаемые антропологи до 60-х годов. Переход к двуногому передвижению при этом считался вторичным. Тогда считали, что он был вызван преимуществами, которые давало освобождение рук: увеличенный мозг мог ставить сложные задачи и контролировать их выполнение руками. Однако последние данные, полученные при изучении ископаемых, указывают на то, что все происходило в обратном порядке. Сначала появилась двуногость. “Люси”, которая жила гораздо позднее рандеву № 1, ходила на двух ногах (почти так же, а может, и совсем так же ловко, как мы), однако размер ее мозга оставался примерно таким, как у шимпанзе. При этом увеличение мозга действительно могло быть связано с освобождением рук, но в обратной последовательности. То есть скорее освобождение рук при переходе к двуногому передвижению привело к увеличению мозга. Вначале возникли “аппаратные средства” – руки, а после “программное обеспечение” – мозг.
Эпилог к рассказу Stw 573
Можно долго рассуждать о причинах возникновения двуногости. Как бы то ни было, недавние находки окаменелостей показывают, что незадолго до рандеву № 1 гоминиды уже ходили на двух ногах.
А рандеву № 1 – не что иное, как момент разделения нашей ветви и ветви шимпанзе. Меня это немного смущает. Ведь получается, что на эволюцию двуногости осталось совсем немного времени.
В 2000 году группа французских ученых во главе с Бриджит Сеню и Мартином Пикфордом объявила об обнаружении новой окаменелости в Кении, в Туген-Хиллс, к востоку от озера Виктория. Оррорин (Orrorm tugenensis), которого назвали “человеком тысячелетия”, был датирован 6 млн лет и дал название новому роду. По мнению обнаруживших его ученых, он ходил на двух ногах. Так, верхняя часть его бедренной кости, прилегающая к суставу, напоминает скорее кость человека, чем австралопитека. Этот факт, наряду с особенностями фрагментов костей черепа, навел Сеню и Пикфорда на мысль, что именно оррорин, а не “Люси”, является предком поздних гоминид. Однако французские исследователи пошли дальше и предположили, что ардипитек (Ardipiecus) был предком скорее современных шимпанзе, чем современного человека. Конечно, для разрешения этого спора нужно больше ископаемых. Многие ученые скептически относятся к этим рассуждениям, а некоторые и вовсе считают, что для заключения о двуногости оррорина нужно больше доказательств. Если он был двуногим, то было это около 6 млн лет назад – а примерно тогда, согласно молекулярным данным, и произошло расхождение человека и шимпанзе. В связи с этим возникает вопрос о скорости, с которой должна была эволюционировать двуногость.
Итак, двуногий оррорин жил подозрительно близко к рандеву № 1. А вот череп, недавно найденный в Чаде, в Южной Сахаре, группой французских ученых во главе с Мишелем Брюне, является даже большей угрозой для общепринятых представлений. Отчасти потому, что он очень древний, а отчасти потому, что он обнаружен далеко к западу от Восточно-Африканской рифтовой долины. Об этом мы еще поговорим: многие ученые считали, что ранняя эволюция гоминид связана с регионом к востоку от этой долины. Черепу дали имя Тумай (“надежда на жизнь” на местном языке горан) и название сахелянтроп (Sahelanthropus tchadensis) – по области Сахель. Это довольно интересный череп: спереди он почти как человеческий (лицевая часть не выступает вперед, как у шимпанзе или гориллы), а сзади похож на череп шимпанзе, в том числе размером черепной коробки. Надбровные дуги сахелянтропа очень хорошо развиты, а череп даже толще, чем у гориллы. Это позволяет предположить, что Тумай был самцом. Зубы у него довольно сильно похожи на человеческие, особенно толщиной эмали, которая занимает промежуточное положение между шимпанзе и человеком. Большое затылочное отверстие выдвинуто вперед сильнее, чем у шимпанзе или гориллы. Это навело Брюне на мысль, что Тумай ходил на двух ногах (с этим не все согласны). Хорошо было бы иметь доказательства в виде костей таза и ног – однако, увы, пока ничего не нашлось, кроме черепа.
Череп сахелянтропа (Sahelanthropus tchadensis), или Тумай. Найден в 2001 году в области Сахель (Чад) Мишелем Брюне и его коллегами.
В этом районе нет вулканических пород, по которым можно было бы провести радиометрическое датирование, и Брюне пришлось использовать в качестве индикаторов другие близлежащие окаменелости. Полученные данные сравнивали с уже известными данными по фауне из других частей Африки, для которых имелись точные датировки. Сравнение показало, что возраст Тумая составляет 6–7 млн лет. Брюне и его коллеги считают, что их находка старше, чем оррорин – это, как нетрудно догадаться, вызывает праведный гнев первооткрывателей оррорина. Бриджит Сеню из Национального музея естественной истории в Париже объявила Тумая “самкой гориллы”, а ее коллега Мартин Пинкер заявил, что клыки Тумая типичны “для большой самки обезьяны”. Напомню, это те же ученые, которые (возможно, справедливо) отказались принимать всерьез “человеческие” амбиции ардипитека – соперника “их” оррорина – на звание самого древнего из людей. Другие специалисты приняли Тумая радушнее: “удивительный”, “восхитительный”, “произведет эффект небольшой атомной бомбы”.
Если обнаружившие их ученые не ошибаются и оррорин с Тумаем действительно ходили на двух ногах, наша стройная схема происхождения человека может пошатнуться. Ведь мы полагаем, что эволюционные изменения равномерно заполняют отведенное им время. То есть если между рандеву № 1 и современным Homo sapiens прошло 6 млн лет, то количество изменений должно равномерно распределиться по этому промежутку. Но на самом деле оррорина и Тумая от времени жизни сопредка № 1 отделяет лишь небольшой промежуток. Согласно молекулярным данным, именно сопредок № 1 был точкой расхождения эволюционных линий шимпанзе и человека. По некоторым оценкам, оррорин и Тумай жили даже немного раньше сопредка № 1.
Допустим, молекулярные и ископаемые датировки верны. Тогда у нас четыре варианта (или комбинация этих вариантов), которые удовлетворяют требованиям оррорина и Тумая.
1. Оррорин и (или) Тумай ходили на четырех конечностях. Это не так невероятно, как кажется. Однако, поскольку три остальных варианта эту возможность не предусматривают, предположим, что это не так – иначе нам не о чем будет спорить.
2. Сразу после сопредка № 1, который, как и шимпанзе, ходил на четырех конечностях, произошел эволюционный взрыв. После сопредка № 1 Тумай и оррорин, уже больше похожие на человека, перешли к двуногому передвижению так быстро, что датировать все эти события отдельно почти не представляется возможным.
3. Человеческие признаки, например двуногость, появлялись в эволюции больше одного раза – может быть, даже многократно. Возможно, оррорин и Тумай – это просто ранние “эксперименты” африканских человекообразных обезьян с двуногостью. (Возможно, что и с другими человеческими признаками тоже.) Согласно этой гипотезе, оррорин и Тумай могли жить раньше сопредка № 1 и при этом уже ходить на двух ногах. В таком случае наша эволюционная линия – более поздняя попытка встать на ноги.
4. Шимпанзе и гориллы – потомки больше похожих на человека и, возможно, даже двуногих предков, которые позднее вернулись к передвижению на четырех конечностях. Согласно этой гипотезе, сопредком № 1 мог быть, например, Тумай.
У трех последних гипотез есть слабые места. Многие ученые сомневаются насчет датировок или предполагаемой двуногости Тумая и оррорина. Но предположим, что сомневаться здесь не в чем, и рассмотрим три гипотезы, предполагающие давнее возникновение двуногости. Теоретически они равновероятны. Из “Рассказа Галапагосского вьюрка” и “Рассказа Двоякодышащей рыбы” мы узнаем, что эволюция может идти и очень медленно, и очень быстро. Так что теория № 2 на самом деле правдоподобна. В “Рассказе Сумчатого крота” мы услышим, что эволюция может несколько раз проходить одним и тем же путем – или параллельными. Так что ничего невероятного нет и в теории № 3. Теория № 4 на первый взгляд кажется самой странной. Мы привыкли думать, что “произошли” от обезьян – а теория № 4 переворачивает все с ног на голову. Более того, она может даже оскорбить человеческое достоинство (по своему опыту скажу, что ее часто воспринимают как шутку). Кроме того, существует так называемый закон Долло, согласно которому эволюция является необратимой, и может показаться, что теория № 4 нарушает этот закон.
Однако услышав “Рассказ Слепой пещерной рыбы”, в котором пойдет речь о законе Долло, мы поймем, что это не тот случай. По существу, в теории № 4 нет ошибок. Шимпанзе ничто не мешало пройти “человекоподобную” двуногую стадию, а потом вернуться к четвероногому обезьяньему облику. Кстати, эта идея была изложена Джоном Гриббином и Джереми Шерфа в книгах “Загадка обезьяны” и “Первый шимпанзе”. Они даже предположили, что шимпанзе произошли от грацильных австралопитеков (например “Люси”), а гориллы – от массивных австралопитеков (например OH у). В поддержку этого вызывающего предположения авторы приводят на удивление веские аргументы. Они делают акцент на одной из теорий эволюции человека, которая довольно долго была широко признанной. Согласно этой теории, люди – это ювенильные обезьяны, которые стали половозрелыми. Иначе говоря, мы вроде шимпанзе, которые никогда не повзрослеют.
В “Рассказе Аксолотля” я подробнее расскажу о неотении. Аксолотль – это личинка-переросток, головастик с половыми органами. В классическом эксперименте Вилема Лауфбергера аксолотль в результате инъекций гормонов превращался во взрослую саламандру неизвестного вида. (Позднее Джулиан Хаксли повторил эксперимент, не зная о предшествующей работе. В англоговорящих странах больше известен второй эксперимент.) В эволюции аксолотля взрослая стадия “отрезана”. Под влиянием гормона аксолотль вырос во взрослую особь. Реконструированную таким образом взрослую саламандру прежде никто не встречал в природе. Так была восстановлена последняя стадия жизненного цикла.
Это явление не осталось без внимания младшего брата Джулиана – писателя Олдоса Хаксли. Когда я был подростком, роман “Через много лет” был одним из моих любимых. Это книга о богаче Джо Стойте, который немного похож на Уильяма Рэндольфа Херста и с той же равнодушной жадностью собирает предметы искусства. Строгое религиозное воспитание, которое он получил, привело к тому, что всю свою жизнь он боялся смерти. Поэтому Стойт нанял блестящего и циничного биолога, доктора Зигмунда Обиспо, чтобы тот придумал, как продлить жизнь вообще и жизнь Джо Стойта в частности. На Стойта работает и Джереми Пордидж, истинно британский ученый, который занимается составлением каталога рукописей XVIII века, по дешевке приобретенных для библиотеки Стойта. В записной книжке пятого графа Гонистерского Пордидж обнаруживает описание сенсационного открытия и сообщает об этом Обиспо. Старый граф был помешан на идее вечной жизни (для обретения бессмертия он, например, ел сырые рыбьи внутренности). При этом не сохранилось свидетельств об его смерти. И тогда Обиспо отправляется в Англию, чтобы найти останки графа. С собой он берет Стойта, который становится к тому времени еще сварливее. И… они находят графа живым и здоровым. Ему двести лет. Граф превратился из ювенильной обезьяны, которой мы все являемся, в совершенно взрослую особь. Он стал волосатым и приобрел весьма отталкивающую наружность. Он ходит на четырех конечностях, мочится на пол и мычит под нос изувеченные обрывки арий Моцарта. А демонический доктор Обиспо, вне себя от восторга и, несомненно, знакомый с экспериментом Джулиана Хаксли, советует Стойту уже завтра начать с рыбьих внутренностей.
Идея Гриббина и Шерфа, в сущности, заключается в том, что современные шимпанзе и гориллы подобны графу Гонистерскому. То есть они представляют собой людей (или австралопитеков, орроринов, сахелянтропов), которые повзрослели и вновь стали четвероногими обезьянами, как их и наши далекие предки. Я никогда не считал теорию Гриббина и Шерфа бессмыссленной. Новые находки очень древних гоминид, таких как оррорин или Тумай, живших очень близко от времени отделения человека от шимпанзе, словно шепчут: “Мы же вам говорили!”
Даже если мы решим, что оррорин и Тумай ходили на двух ногах, я не смогу с уверенностью отдать предпочтение какой-нибудь из теорий №№ 2, 3 и 4. Кроме того, не стоит забывать о теории № 1, согласно которой они ходили на четырех конечностях. Многие ученые считают ее наиболее правдоподобной. В любом случае каждая из теорий по-своему реконструирует облик сопредка № 1. Согласно теориям №№ 1, 2 и з, сопредок № 1 был похож на шимпанзе, ходил на четырех конечностях и иногда поднимался на задние ноги. Теория № 4, напротив, предполагает, что сопредок № 1 выглядел скорее как человек. На рандеву № 1 мне придется сделать выбор в пользу одной из теорий. Не могу сказать, что мне этого хочется, но я все-таки соглашусь с решением большинства и буду считать, что сопредок № 1 был похож на шимпанзе. Встречайте же его!
Шимпанзе. Белые линии образуют филогенетическое древо шимпанзе и человека. Эти линии разветвляются в точке, соответствующей сопредку № 1 (кружок с номером). Ветвь справа – "пилигримы": пока это лишь мы, люди. Левая ветвь – шимпанзе, ок. 2 млн лет назад разделившиеся на два вида. Приблизив любую из ветвей, мы увидим, что это не сплошные линии, а сети скрещиваний (как на диаграмме для рандеву № о).
На рис. (слева направо): шимпанзе обыкновенный (Pan troglodytes), бонобо (Pan paniscus).
Рандеву № 1
Шимпанзе
В Африке 5–7 млн лет назад нам уготована удивительная встреча. Мы впервые увидим пилигримов, принадлежащих к другому биологическому виду, точнее, к двум видам. Обыкновенный шимпанзе и карликовый шимпанзе (бонобо) объединились примерно за 4 млн лет “до” нашего рандеву. Наш общий предок – сопредок № 1 – наш общий прародитель примерно в 250-тысячном поколении.
Итак, мы приближаемся к рандеву № 1. Шимпанзе двигаются в ту же точку с другой стороны. К сожалению, о той стороне мы ничего не знаем. Хотя в Африке найдено несколько тысяч ископаемых остатков гоминид, ученым не удалось обнаружить ни одной окаменелости, которую можно было бы однозначно отнести к линии “сопредок № 1 – шимпанзе”. Возможно, причина в том, что шимпанзе живут в лесу, а лесная подстилка – не лучшая среда для фоссилизации. Как бы то ни было, пилигримы-шимпанзе движутся к рандеву № 1 вслепую. Пока не удалось найти их предков – современников “наших” родственников: “мальчика c озера Туркана”, 1470, “миссис Плез”, “Люси”, Stw 573, OH 5 и других.
Воображаемая встреча с шимпанзе произошла на некоей плиоценовой полянке. Взгляды темно-карих глаз шимпанзе и наших, цвет которых менее предсказуем, устремлены на сопредка № 1. Когда мы пытаемся представить себе этого сопредка, разумеется, хочется спросить, на кого он сильнее похож: на современных шимпанзе или современных людей? А может, на тех и на других? Или вообще ни на кого?
Предыдущий раздел я завершил весьма привлекательной гипотезой, и я не собираюсь от нее отказываться. По-моему, разумно предположить, что сопредок № 1 был похож на шимпанзе – хотя бы потому, что шимпанзе сильнее, чем люди, похожи на человекообразных обезьян. Мы вообще довольно нетипичны на фоне остальных обезьян – современных и ископаемых. Это говорит о том, что в эволюционной линии, ведущей к человеку, произошло больше изменений, чем в линии, ведущей к шимпанзе. При этом не стоит думать, будто нашими предками были шимпанзе. На эти мысли наводит словосочетание “недостающее звено”. До сих пор люди говорят: “Если мы произошли от шимпанзе, то почему шимпанзе до сих пор существуют?”
Итак, мы встретились с шимпанзе и бонобо. Скорее всего, общий предок, которого мы приветствуем на плиоценовой полянке, был таким же волосатым, как шимпанзе, и располагал мозгом примерно такого же размера. Мне не хочется отказываться от гипотез, которые я привел в конце предыдущего раздела, но все же предположу, что сопредок № 1, вероятно, ходил на руках (опираясь на кисти) и на ногах – как шимпанзе. Возможно, он отчасти проводил время на деревьях. Но немало времени сопредок № 1 проводил и на земле, например, питаясь на корточках, как предположил бы Джонатан Кингдон. Все доступные данные указывают на то, что он жил в Африке. Вполне возможно, что он, следуя местным обычаям, использовал примитивные орудия. Так до сих пор делают шимпанзе. Скорее всего, сопредок № 1 был всеяден. Может быть, иногда он охотился, но все-таки предпочитал мясу фрукты.
Есть свидетельства, что бонобо иногда убивают антилоп-дукеров. Однако гораздо чаще за охотой застают обыкновенных шимпанзе. Иногда они даже устраивают групповую охоту на обезьян-колобусов. Однако основу рациона обоих видов все равно составляют фрукты, а мясо остается лишь дополнением. Джейн Гудолл, описавшая охоту и межгрупповые конфликты у шимпанзе, первой обратила внимание и на то, что шимпанзе используют самодельные орудия, чтобы выуживать термитов из термитников. Сегодня об этой их способности знают все. За бонобо такого не замечали – но, возможно, потому, что они хуже изучены. По крайней мере, в неволе бонобо охотно пользуются орудиями. Что касается обыкновенных шимпанзе, то в разных частях Африки у них формируются местные обычаи использования орудий. Так, например, восточные шимпанзе, которых изучала Джейн Гудолл, охотятся на термитов. В других группах шимпанзе, на западе, сформировалась традиция разбивать орехи с помощью каменных или деревянных молотков и наковален. Для этого необходима сноровка. Бить по ореху надо достаточно сильно, чтобы разбить скорлупу – но и не слишком сильно, чтобы не раздавить орех. Сейчас об этом много говорят как о потрясающем открытии. А между тем раскалывание орехов описал еще Дарвин в главе 3 “Происхождения человека” (1871):
Много раз было говорено, что ни одно из животных не употребляет каких бы то ни было орудий; между тем, шимпанзе в естественном состоянии разбивает камнем один из туземных плодов, похожий на грецкий орех[8].
Свидетельство, на которое ссылается Дарвин (доклад миссионера из Либерии, помещенный в “Бостонском журнале естественной истории” в 1843 году), весьма немногословно. Там просто сказано, что “Troglodytes niger, или черные африканские орангутаны”, едят неизвестные орехи, разбивая их “камнями точно так, как это делают люди”.
В особенностях поведения шимпанзе вроде раскалывания орехов и выуживания термитов особенно любопытно то, что у каждой группы есть свои обычаи, которые передаются из поколения в поколение. А ведь это настоящая культура. Транслируются и социальные обычаи. Так, у одной группы шимпанзе, живущей в Махале (Танзания), свой стиль взаимного груминга, известный как рукопожатие. Такое же поведение наблюдалось и в другой популяции – в Кибале (Уганда). Но в популяции в Гомбе-Стрим, которую вдоль и поперек изучила Джейн Гудолл, такое поведение не замечено. Описан также случай, когда этот жест возник и распространился в группе шимпанзе, живущих в неволе.
Итак, оба вида современных шимпанзе в естественных условиях пользуются орудиями, как и мы. Это позволяет предположить, что сопредок № 1 тоже мог это делать. И хотя в природе за бонобо такого не водится, в неволе они довольно ловко используют орудия. Тот факт, что обыкновенные шимпанзе в разных популяциях используют разные орудия, говорит о том, что если в определенном регионе орудия не используются, это ничего не значит. Например, шимпанзе из Гомбе-Стрим не занимаются раскалыванием орехов. Возможно, если бы им показали западноафриканский обычай колки орехов, они его переняли бы. Подозреваю, что это верно и в отношении бонобо. Может быть, за ними пока мало наблюдали в естественных условиях. В любом случае, мне кажется, мы вполне можем сказать, что сопредок № 1 изготавливал орудия. Это подкрепляется также тем, что иногда орудиями пользуются дикие орангутаны. Причем у них, как и у шимпанзе, в каждой популяции свои обычаи [9].
Шимпанзе обоих современных видов живут в лесу. Мы же, жители саванны, в смысле экологии скорее похожи на павианов – за исключением того, что павианы не относятся к человекообразным обезьянам. Ареал обитания бонобо сейчас ограничен лесами к югу от большой излучины реки Конго и к северу от ее левого притока Касаи. Ареал обитания обыкновенных шимпанзе шире: они живут к северу от реки Конго до океанского побережья на западе и Восточно-Африканской рифтовой долины на востоке.
Из “Рассказа Цихлиды” мы узнаем, что современные эволюционные представления предполагают, что для разделения предкового вида на два дочерних необходима их первоначальная географическая изоляция. В отсутствие географического барьера между двумя популяциями происходит генетический обмен, и это удерживает их вместе. Весьма вероятно, что река Конго была таким барьером, препятствующим генетическому обмену и способствующим эволюционному расхождению двух видов шимпанзе 2–3 млн лет назад. Такую же роль могла играть и Восточно-Африканская рифтовая долина во время своего формирования. Возможно, она послужила барьером для генов, в результате чего наша эволюционная линия отошла от линии шимпанзе.
Эту теорию выдвинул голландский приматолог Адриан Кортланд. Известность она приобрела позднее, когда ее поддержал французский палеонтолог Ив Коппенс, и сейчас эту теорию все знают под названием, которое дал ей Коппенс – “Истсайдская история”. (Кстати, Коппенса в его родной Франции часто называют первооткрывателем “Люси”, иногда даже ее “отцом”. Не знаю, как к этому относиться, потому что в англоговорящих странах это важное открытие обычно связывают с Дональдом Джохансоном.) “Истсайдская история” пережила невеселые времена, когда в Чаде, к западу от Восточно-Африканской рифтовой долины, был обнаружен сахелянтроп (Sahelanthropus), или Тумай. Усложнил ситуацию и Australopithecus bahrelghazali – мало кому известный австралопитек, тоже обнаруженный в Чаде. Впрочем, он несколько моложе.
Все мои рассуждения на этот счет устареют, как только обнаружатся новые ископаемые. Так что лучше я передам слово бонобо.
Рассказ Бонобо
Бонобо (Pan paniscus) очень похож на обыкновенного шимпанзе (Pan troglodytes), и до 1929 года их считали единым видом. По размеру бонобо, несмотря на свое второе название, от которого давно следует отказаться, – карликовый шимпанзе, – не меньше обычного. У него немного другие пропорции тела и особенности поведения, и это послужит темой его рассказа. Приматолог Франс де Вааль выразился так: “Шимпанзе решает проблемы секса, используя власть; бонобо решает проблемы власти, используя секс”. Бонобо действительно пользуются сексом как валютой социального взаимодействия – так же, как мы пользуемся деньгами. Они используют копуляцию или имитирующие половой акт движения для примирения, для демонстрации доминирования и укрепления социальных связей с особями любого возраста и пола, включая детенышей. Педофилия бонобо совершенно не смущает. Им вообще нравятся всевозможные – филии. Де Вааль описывает, как в группе бонобо, за которыми он наблюдал в неволе, у самцов возникала эрекция, когда служащий подходил к ним во время кормления. По мнению де Вааля, так они готовятся к дележу пищи: инструментом такого дележа опять-таки является секс. Самки бонобо практикуют GG-трение (трение гениталиями):
Одна самка цепляется руками и ногами за партнершу, которая, стоя на руках и ногах, приподнимает ее с земли. Затем они трутся гениталиями, издавая при этом смешки и визги, которые, вероятно, выражают оргазменные ощущения.
Изображение любвеобильных бонобо а-ля Хейт-Эшбери привело к неразберихе в головах вполне порядочных людей, взросление которых пришлось на 60-е годы. Или, возможно, эти люди просто приняли близко к сердцу средневековые бестиарии, согласно которым животные существуют лишь для того, чтобы преподать нам некий моральный урок. Ошибка заключается в ложном представлении о том, что мы ближе к бонобо, чем к обыкновенному шимпанзе. Соблазненные Маргарет Мид, мы почему-то считаем, что эта приятная и легкомысленная модель поведения нам ближе, чем патриархальный и кровожадный общественный строй обыкновенных шимпанзе. Должен вас огорчить: у нас одинаковая степень родства с обоими видами – просто потому, что Pan troglodytes и P paniscus происходят от общего предка, который жил позднее, чем наш с ними общий предок. Молекулярные данные также говорят, что шимпанзе и бонобо ближе к людям, чем к гориллам. Следовательно, люди близки к гориллам настолько же, насколько они близки к шимпанзе и бонобо. То же с орангутанами: с ними у нас та же степень родства, как и с гориллой, обыкновенным шимпанзе и бонобо.
Впрочем, отсюда не следует, что внешне мы в равной степени похожи на обыкновенного шимпанзе и бонобо. Шимпанзе со времени жизни сопредка № 1 изменились сильнее, чем бонобо, а мы скорее похожи на бонобо, чем на шимпанзе, и наоборот. При желании можно найти общие черты с обоими нашими родственниками из рода Pan – возможно, их примерно поровну. С обоими этими видами нас связывает одинаковая степень родства, потому что у нас общий предок. В этом и заключается мораль “Рассказа Бонобо” – и не только его.
Рандеву № 2
Гориллы
“Молекулярные часы” показывают, что рандеву № 2, где к нам присоединяются гориллы, снова назначено в Африке. От рандеву № 1 его отделяет миллион лет. Семь миллионов лет назад Северная и Южная Америка еще не срослись, Гималаи только что поднялись, а Анды – еще нет. При этом континенты выглядели почти так, как сейчас. А климат Африки, хотя и был чуть более влажным и имел менее выраженную сезонность, в целом был похож на нынешний. В Африке было гораздо больше лесов. Даже Сахара была лесистой саванной.
К сожалению, не осталось ископаемых, которые могли бы заполнить пробел между сопредками №№ 1 и 2, и мы не знаем, был ли сопредок № 2 (наш предок примерно в 300-тысячном поколении) похож на гориллу, на шимпанзе или на человека. Мне кажется, он был похож на шимпанзе – просто потому, что гориллы выглядят очень своеобразно. Впрочем, не стоит преувеличивать своеобразие горилл. Это не самые крупные обезьяны в истории Земли. Похожая на орангутана азиатская человекообразная обезьяна гигантопитек (Gigantopithecus) была на две головы выше самой крупной из горилл и гораздо шире ее в плечах. Гигантопитек жил на территории нынешнего Китая и вымер всего 500 тыс. лет назад. Таким образом, он отчасти современник Homo erectus и архаичного Homo sapiens. Это было недавно, и некоторые фантазеры предположили, что йети… Нет-нет, я отказываюсь это обсуждать. Гигантопитек, по-видимому, передвигался на четырех конечностях, как и гориллы и шимпанзе – но не как орангутаны: последние живут в основном на деревьях.
Гориллы. Филогенетическое древо, иллюстрирующее отход горилл от других африканских человекообразных обезьян. Согласно генетическим данным, это произошло ок. 7 млн лет назад. Правая ветвь – шимпанзе и люди (сопредок № 1 отмечен точкой, соответствующей 6 млн лет), левая – единственный вид горилл (который, как теперь считается, следует делить на два). На рис.: западная горилла (Gorilla gorilla).
Логично предположить, что сопредок № 2, как и шимпанзе, ходил, опираясь на костяшки пальцев, и на ночь забирался на дерево. Естественный отбор в условиях тропического солнца благоприятствует сильной пигментации, которая защищает от ультрафиолетового излучения. Так что сопредок № 2, скорее всего, был темно-коричневым или черным. А поскольку все обезьяны, кроме людей, покрыты волосами, было бы странно, если бы сопредки №№ 1 и 2 сильно от них отличались. И, наконец, поскольку шимпанзе, бонобо и гориллы живут в лесу, рандеву № 2 разумно назначить там же. Лес этот должен находиться в Африке, но где именно, к сожалению, неясно.
Гориллы отличаются от шимпанзе не только размерами. Это нужно иметь в виду при реконструкции сопредка № 2. Гориллы – строгие вегетарианцы. У самцов есть гаремы. Шимпанзе беспорядочны в половых связях, и эти различия в системах скрещивания любопытным образом сказываются на размере их яичек. (Об этом мы узнаем из “Рассказа Тюленя”.) Я подозреваю, что системы скрещивания вообще довольно лабильны, то есть в процессе эволюции легко изменяются. Пока я не вижу способа узнать, как с этим обстояло дело у сопредка № 2. Ведь, например, у людей в разных культурах разные системы скрещивания – от строгой моногамии до огромных гаремов. Поэтому я не вижу смысла гадать, как размножался сопредок № 2, и закрываю эту тему.
Рассказ Гориллы
Становление дарвинизма, которое пришлось на XIX век, привело к появлению двух противоположных взглядов на человекообразных обезьян. Противники Дарвина, хотя и согласившиеся принять идею эволюции, были в ужасе от возможного родства с грубыми, отвратительными тварями и отчаянно пытались преувеличить наши отличия. Особенно это касалось горилл. Человекообразных обезьян называли “животными”, противопоставляя их человеку. Более того: если, например, кошки и олени кажутся красивыми, гориллы и другие человекообразные обезьяны именно в силу сходства с нами кажутся карикатурами, пародиями.
Дарвин часто напоминал, что он думает по этому поводу: так, в “Происхождении человека” он как бы между прочим отмечает, что обезьяны “с удовольствием курят табак”. Томас Генри Гексли (Хаксли), знаменитый последователь Дарвина, однажды участвовал в ожесточенном споре с сэром Ричардом Оуэном, ведущим анатомом того времени. Оуэн утверждал (ошибочно, как доказал Гексли), что наличие малого гиппокампа является уникальной чертой человеческого мозга. Однако сейчас ученым уже не кажется, что мы напоминаем человекообразных обезьян. Они знают, что мы относимся к африканским человекообразным обезьянам. И теперь мы противопоставляем человекообразных обезьян (включая человека) всем остальным обезьянам.
Так было не всегда. Прежде человекообразных обезьян объединяли с другими высшими приматами, и в некоторых ранних описаниях к человекообразным обезьянам относят, например, павианов или маготов. Удивительно другое. Задолго до того, как люди стали мыслить в терминах эволюции, и до того, как человекообразных обезьян противопоставили остальным обезьянам, крупных человекообразных обезьян нередко путали с людьми. И хотя приятно думать, что такое представление предвосхищало идею эволюции, следует признать, что оно сродни расизму. Первые европейские путешественники видели в шимпанзе и гориллах Африки близких родственников чернокожих – но не белых. Интересно, что у племен Юго-Восточной Азии и Африки есть легенды, в которых эволюция как бы направлена вспять: согласно преданиям, крупные человекообразные обезьяны – это согрешившие люди. “Орангутан” по-малайски значит “лесной человек”.
Рисунок орангутана (Ourang Outang), выполненный в 1658 году голландским доктором Бонциусом, по словам Гексли, изображает “не что иное, как очень волосатую женщину, довольно миловидную, с совершенно человеческими пропорциями тела и ногами”. Правда, почему-то волосы у нее растут по всему телу, кроме одного из участков, которые у женщин как раз покрыты волосами: лобок, как видно на рисунке, гол. Весьма антропоморфны и рисунки, сделанные Хоппиусом (1763), учеником Линнея. У одного из изображенных существ есть хвост, однако в остальном оно неотличимо от человека: стоит на двух ногах и держит трость. Плиний Старший писал, что “хвостатых существ, говорят, даже видели за игрой в шашки”.
Хочется думать, что все эти мифы должны были подготовить человечество к идее эволюции или даже ускорить ее открытие в XIX веке. Однако это не так. Вместо этого возникла путаница между человекообразными обезьянами, обычными обезьянами и человеком. Из-за этого бывает трудно понять, когда был открыт тот или иной вид человекообразных обезьян – а часто невозможно понять даже, о каком виде речь. Исключением является горилла, которая стала известна науке в последнюю очередь.
В 1847 году американский миссионер доктор Томас Сэвидж увидел в доме другого миссионера на реке Габон “череп, по словам туземцев, принадлежащий существу, напоминающему обезьяну и замечательному своими размерами, свирепостью и повадками”. В том же году, в котором вышло “Происхождение видов”, газета “Иллюстрей-тед Лондон ньюс” напечатала сенсационную статью о гориллах. Эти вымыслы (в том числе об их свирепости, достигшие максимального масштаба в фильмах о Кинг-Конге) не сравнятся даже с россказнями путешественников того времени:
Наблюдать горилл вблизи почти невозможно – особенно потому, что, увидев человека, они сразу нападают. Взрослый самец обладает невероятной силой, зубы у него крупные и мощные. Говорят, что горилла, спрятавшись в толстых ветвях деревьев, подкарауливает человека. Когда он проходит под деревом, горилла спускает страшную заднюю ногу… и хватает жертву за горло, поднимая в воздух, после чего швыряет на землю мертвой. Этим животным движет чистая злоба: оно не ест человеческую плоть, а просто получает жестокое удовольствие от убийства.
Сэвидж решил, что череп, который он видел у миссионера, принадлежит “новому виду орангутана”. Позднее он пришел к выводу, что новый вид – не что иное, как “понго” из рассказов первых путешественников по Африке. Давая виду название, Сэвидж с коллегой-анатомом, профессором Уайменом, решил воздержаться от “понго” и выбрал давно забытое слово “горилла”: так карфагенский мореплаватель назвал диких волосатых людей, якобы встреченных им на острове у побережья Африки. И словом “горилла” стали обозначать найденное Сэвиджем животное – на латыни и других языках. А “понго” впоследствии стало латинским родовым названием азиатских орангутанов.
Судя по тому, где Сэвидж обнаружил животное, это скорее всего была западная горилла (Gorilla gorilla). Сэвидж и Уаймен отнесли его к тому же роду, что и шимпанзе, дав название Troglodytes gorilla. Однако по правилам зоологической номенклатуры на имя Troglodytes не имели права ни шимпанзе, ни горилла, поскольку оно уже принадлежало – ни за что не угадаете! – крошечной птице крапивнику. Это слово сохранилось в качестве видового названия обыкновенного шимпанзе – Pan troglodytes. А видовое название, которое дал горилле Сэвидж, возвели до родового названия Gorilla. Так называемая горная горилла в 1902 году была “открыта” – точнее, застрелена – немцем Робертом фон Берингом. Теперь ее считают подвидом восточной гориллы, а сама восточная горилла названа в его честь: Gorilla beringei. Не уверен, что это справедливо.
Сэвидж не верил, что его горилла и правда принадлежит к расе, о которой упоминал карфагенянин. Однако есть и другой пример: у Геродота и Гомера упоминаются “пигмеи” – легендарная раса крошечных людей. В XVII и XVIII веках ученые пришли к выводу, что это шимпанзе, к тому времени открытые в Африке. У Тайсона (1699) есть рисунок “пигмея”, который, как обратил внимание Гексли, изображает молодого шимпанзе, пусть и поставленного на две ноги и опирающегося на трость. Ну а сегодня мы снова используем слово “пигмей”" для обозначения очень маленького человека.
Это возвращает нас к мысли о расизме, которым до недавнего времени отличалась наша культура. Ранние исследователи приписывали лесным племенам более близкое родство с шимпанзе, гориллами и орангутанами, чем с собой. В XIX веке, уже после Дарвина, эволюционисты зачастую рассматривали африканцев как промежуточное звено между обезьянами и европейцами. Это неверно не только фактически, но и нарушает фундаментальный принцип эволюции. Два двоюродных брата всегда в одинаковом родстве с любым членом “внешней группы” (человеком, не принадлежащим к их группе): у них общий предок. Все люди в равном родстве со всеми гориллами (см. “Рассказ Бонобо”). Однако никуда не девается расизм и специесизм (видовой шовинизм), а также вечные сомнения в том, насколько должны быть широки рамки морали. Все это неловким и подчас жестоким образом влияет на отношение человека к нашим собратьям – людям и человекообразным обезьянам[10].
Орангутаны. Согласно общепринятой точке зрения, два вида азиатских орангутанов отделились от остальных человекообразных обезьян ок. 14 млн лет назад. Как и на остальных филогенетических схемах, правая ветвь объединяет уже присоединившихся к нам "пилигримов”. Предыдущие сопредки обозначены точками.
На рис.: борнейский орангутан (Pongo pygmaeus).
Рандеву № 3
Орангутаны
Согласно молекулярным данным, рандеву № 3 (здесь к нам присоединяется орангутан) назначено на 14 млн лет назад – на середину миоценовой эпохи. Хотя тогда на нашей планете уже начало холодать, климат все же был теплее нынешнего, а уровень моря – выше. Из-за этого (а также небольших различий в положении континентов) перешеек между Азией и Африкой, а также значительная часть Юго-Восточной Европы время от времени затапливались. Это важно в контексте размышлений о том, где мог жить сопредок № 3 – наш гипотетический предок в 666666-тысячном поколении. Жил ли он в Африке, как сопредки №№ 1 и 2 – или в Азии? Поскольку он является общим предком человека и азиатских человекообразных обезьян, следует быть готовым к встрече с ним на любом из двух континентов, и тому есть доказательства. В пользу Азии говорит множество окаменелостей, датируемых как раз второй половиной миоцена. С другой стороны, похоже, что именно в Африке появились человекообразные обезьяны – еще до миоценовой эпохи. Различные формы человекообразных обезьян процветали в Африке в раннем миоцене – проконсулиды (несколько видов человекообразных обезьян рода Proconsul) и другие, например афропитек (Afropithecus) и кениапитек (Kenyapithecus). Ближайшие современные формы, а также все наши послемиоценовые ископаемые родственники найдены к Африке.
О наших особых отношениях с шимпанзе и гориллами известно лишь несколько десятилетий. Прежде большинство антропологов считало, что человек – это сестринская группа по отношению ко всем человекообразным обезьянам и что он, таким образом, одинаково близок к африканским и к азиатским обезьянам. С общего согласия предпочтение отдали Азии, поскольку именно там жили наши последние миоценовые предки. Некоторые авторитеты даже объявили, что нашли нашего ископаемого “предка” – рамапитека (Ramapithecus). Сегодня считается, что рамапитек – то же животное, что и сивапитек (Sivapithecus), – а по законам зоологической номенклатуры приоритет имеет позднейшее название. Таким образом, название “рамапитек” больше использовать нельзя – а жаль, потому что оно прижилось. К сивапитеку (рамапитеку) ученые относятся по-разному, однако многие соглашаются в том, что он близок к линии, от которой произошел орангутан, – а может, он сам непосредственный предок орангутана. Гигантопитек (Gigantopithecus) – нечто вроде гигантского наземного сивапитека. Известны и другие азиатские ископаемые того периода. Так, за титул миоценового предка человека борются уранопитек (Ouranopithecus) и дриопитек (Dryopithecus). Если бы они жили на “правильном” континенте… Но, как мы увидим, “если” может оказаться реальностью.
Если бы позднемиоценовые человекообразные обезьяны жили в Африке, а не в Азии, в нашем распоряжении имелся бы непрерывный ряд ископаемых, связывающих современных африканских обезьян с раннемиоценовыми формами и богатой африканской фауной проконсулид. После того как с помощью молекулярных данных была абсолютно доказана близость человека к африканским шимпанзе и гориллам, а не к азиатским орангутанам, охотники за предками человека отвернулись от Азии. Ученые решили, что, как бы ни были хороши азиатские человекообразные обезьяны, наша родословная должна относиться к Африке и включать миоценовые формы, – и заключили, что по неизвестным причинам после расцвета миоценовых проконсулид наши африканские предки просто не подвергались фоссилизации.
Это положение вещей сохранялось до 1998 года, когда вышла статья Каро-Бет Стюарт и Тодда Р. Дисотелла “Эволюция приматов – в Африку и из Африки”. В статье (это замечательный пример всестороннего подхода к вопросу) рассказывается о миграциях между Африкой и Азией. И, знаете, сопредок № 3, похоже, жил в Азии. Но об этом после.
А пока задумаемся, как он выглядел. Поскольку сопредок № 3 является общим предком орангутана и современных африканских человекообразных обезьян, он должен быть похожим на любую из них – и одновременно на орангутана. Найдены ли ископаемые, которые могли бы подсказать нам ответ? Что ж, взглянем на генеалогическое древо. К нужному нам периоду относятся люфенгпитек, ореопитек, сивапитек, дриопитек и уранопитек. Наиболее вероятная реконструкция облика сопредка № 3 совместит черты всех пяти азиатских ископаемых родов (при условии, что это животное обитало в Азии). Послушаем “Рассказ Орангутана”, а там решим.
Рассказ Орангутана
Возможно, заявление о наших давних связях с Африкой было поспешным. Что если наши предки покинули Африку около 20 млн лет назад и поселились в Азии, а 10 млн лет назад вернулись в Африку?
Если так, то современные человекообразные обезьяны, включая тех, которые в итоге оказались в Африке, происходят от линии, мигрировавшей из Африки в Азию. Гиббоны и орангутаны – потомки эмигрантов, оставшихся в Азии. Поздние их потомки вернулись в Африку, где раннемиоценовые человекообразные обезьяны уже вымерли, и уже там породили горилл, шимпанзе, бонобо – и нас.
С этим вполне согласуются данные о дрейфе континентов и колебаниях уровня моря. Как раз в нужные моменты в Аравийском море имелись перешейки, соединявшие Азию с Африкой. В пользу этой теории говорит и принцип парсимонии, то есть экономии: хороша та теория, которая многое объясняет, постулируя малое. (Как я не раз говорил, по этому критерию теория естественного отбора Дарвина является, пожалуй, лучшей на свете.) В данном случае речь о том, чтобы до минимума снизить число предполагаемых миграционных событий. С этой точки зрения теория о том, что наши предки все время обитали в Африке (без миграций), на первый взгляд экономнее теории о том, что наши предки сначала переселились из Африки в Азию (первая миграция), а потом вернулись в Африку (вторая миграция).
Филогенетическое древо африканских и азиатских обезьян. Расширения обозначают даты, полученные на основе анализа ископаемых, а линии, соединяющие их с древом, построены методом парсимонии. Stewart and Disotell [273].
Но это частный случай: мы рассмотрели лишь собственную линию и проигнорировали остальных человекообразных обезьян, особенно многие ископаемые виды. Стюарт и Дисотелл провели пересчет миграционных событий, в том числе необходимых для объяснения распределения человекообразных обезьян, включая вымерших. Для этого нужно сначала построить древо, отметив на нем все виды, о которых достаточно данных. Следующий шаг – указать для каждого вида, жил он в Африке или в Азии. На диаграмме Стюарта и Дисотелла азиатские ископаемые отмечены черным цветом, африканские – белым. Там представлены не все известные ископаемые, а лишь те, для которых можно определить положение. Стюарт и Дисотелл не забыли и обезьян Старого Света, которые отделились от человекообразных около 25 млн лет назад (самое наглядное различие между ними состоит в том, что первые сохранили хвосты). Миграционные события указаны стрелками.
С учетом этих ископаемых теория переселения в Азию и обратно оказывается экономнее теории о том, что наши предки все время жили в Африке. Оставим хвостатых обезьян, которые, согласно обеим теориям, участвовали в двух волнах миграции из Африки в Азию, и рассмотрим человекообразных. Теория переселения требует всего двух волн миграции:
1. Популяция человекообразных обезьян переселилась из Африки в Азию около 20 млн лет назад. От нее произошли все азиатские человекообразные обезьян, включая современных гиббонов и орангутанов.
2. Популяция человекообразных обезьян вернулась в Африку. От нее произошли современные африканские человекообразные обезьяны, включая нас.
При этом теория постоянного обитания в Африке для объяснения расселения человекообразных обезьян требует шести миграций. И все они направлены из Африки в Азию:
1. Гиббоны (около 18 млн лет назад).
2. Ореопитек (около 16 млн лет назад).
3. Люфенгпитек (около 15 млн лет назад).
4. Сивапитек и орангутан (около 14 млн лет назад).
5. Дриопитек (около 13 млн лет назад).
6. Уранопитек (около 12 млн лет назад).
Разумеется, эти подсчеты верны лишь при условии, что Огюарт и Дис-отелл, опиравшиеся на анатомические данные, верно построили древо. Они, например, считают, что ближайший из всех ископаемых родственник современных африканских человекообразных обезьян – это уранопитек. Его линия ответвляется непосредственно перед линией африканских человекообразных обезьян. Все следующие родственники, согласно оценкам Стюарт и Дисотелла, – азиаты (дриопитек, сивапитек и другие). Если же авторы неверно интерпретировали анатомические данные (например, если ближайший родственник современных африканских человекообразных обезьян – на самом деле ископаемый африканский кениапитек), подсчет миграционных событий надо провести заново.
Сама генеалогическая схема тоже построена по принципу парсимонии. Но мы не пытаемся уменьшить число миграционных событий, необходимых для теории, и игнорируем географию. Вместо этого мы хотим минимизировать число анатомических совпадений (конвергентная эволюция), положенных в основу теории. Так мы получаем древо, не учитывающее географические события, и, чтобы подсчитать миграционные события, накладываем географические данные (черная и белая маркировка на диаграмме). И приходим к выводу: с наибольшей вероятностью современные африканские человекообразные обезьяны – гориллы, шимпанзе и люди – пришли из Азии.
А теперь любопытное замечание. Ричард Клейн из Стэнфордского университета в учебнике по эволюции человека приводит обзор анатомических данных основных ископаемых. Клейн, сравнивая азиатского уранопитека и африканского кениапитека, задается вопросом, кто из них сильнее похож на нашего близкого предка (или родственника) австралопитека. И делает вывод: австралопитек сильнее похож на уранопитека, и если бы уранопитек жил в Африке, он вполне мог быть предком человека. Однако “на основе географических и морфологических данных”, пишет Клейн, кениапитек более подходящий кандидат. Видите? Клейн предполагает, что африканские человекообразные обезьяны просто не могли произойти от азиатского предка, даже если анатомические данные указывают на это. Таким образом, он подсознательно предпочитает географическую парсимонию анатомической. Из соображений анатомической парсимонии уранопитек к нам ближе, чем кениапитек. Однако, хотя об этом не говорится открыто, географическая парсимония берет верх. Стюарт и Дисотелл утверждают, что при рассмотрении географического распространения всех известных ископаемых анатомическая и географическая парсимонии согласуются. То есть географические данные не противоречат утверждению Клейна, на основе анатомических данных признавшему: уранопитек ближе к австралопитеку.
Возможно, этот спор далек от разрешения. Не так-то просто манипулировать анатомической и географической парсимониями. Статья Стюарт и Дисотелла вызвала бурную реакцию: в научных журналах появлялись и восторженные, и разгромные отклики. Мне кажется, что сегодня, оценив все доступные данные, мы должны отдать предпочтение теории “переселения в Азию и обратно”. Два миграционных события – меньше, чем шесть. Кроме того, мне кажется, между позднемиоценовыми азиатскими обезьянами и “нашей” линией африканских обезьян (например австралопитеками и шимпанзе) есть немалое сходство. Таким образом, теория представляет собой компромисс. Исходя из этого, я назначаю рандеву № 3 (и № 4) не в Африке, а в Азии.
Мораль “Рассказа Орангутана” неоднозначна. Когда ученый выбирает между двумя теориями, на первом месте всегда принцип парсимонии. Однако не всегда ясно, как ее оценивать. Наличие хорошей родословной бывает необходимо для дальнейших рассуждений в рамках эволюционной теории. Но чтобы построить хорошее древо, нужен опыт.
ГИББОНЫ. Двенадцать видов гиббонов сейчас объединяют в четыре группы. Порядок ветвления внутри них остается спорным (см. “Рассказ Гиббона”).
На рис. (слева направо): восточный хулок (Hoolock leuconedys), быстрый гиббон (Hylobatesagilis), сиаманг (Symphalangus syndactylus), желтощекий номаск (Nomascus gabriellae).
Рандеву № 4
Гиббоны
Рандеву, где к нам присоединяются гиббоны, состоялось около 18 млн лет назад. Местом встречи, скорее всего, является Азия – теплый лесистый ландшафт раннего миоцена. Разные авторы выделяют разное число видов гиббонов – до двенадцати. Все они обитают в Юго-Восточной Азии, включая Индонезию и остров Калимантан. Некоторые авторы объединяют их в род Hylobates. Сиаманга обычно выносят в обособленную группу и говорят о “гиббонах и сиамангах”. С учетом того, что сегодня гиббонов делят на четыре группы, а не на две, выделение сиаманга не имеет смысла. Так что я буду называть их всех гиббонами.
Гиббоны – маленькие бесхвостые обезьяны, – возможно, самые виртуозные акробаты. В миоценовую эпоху жило множество мелких человекообразных обезьян. Уменьшение или увеличение размера тела вообще довольно легко происходит в эволюции. Точно так же, как гигантопитек и горилла независимо друг от друга приобрели большие размеры тела, в миоцене, золотом веке обезьян, многие человекообразные обезьяны уменьшились. В Европе, например, в раннем миоцене процветали мелкие бесхвостые плиопетициды. Они, судя по всему, вели сходный с гиббонами образ жизни, хотя и не были их предками. Думаю, что они использовали брахиацию.
По-латыни brachia – рука. При передвижении с помощью брахиации используются не ноги, а руки. Пружиня на руках, гиббон рывками перемещается с ветки на ветку, с дерева на дерево. Длинные руки, работающие по типу маятника, позволяют одним махом преодолеть десять метров. Меня брахиация на высокой скорости восхищает даже сильнее полета. Это наверняка одно из самых удивительных ощущений. К сожалению, современные взгляды на эволюцию человека ставят под сомнение, что мы когда-либо проходили этап брахиации. Впрочем, это не мешает предположить (и не без оснований), что сопредок № 4, наш прародитель примерно в миллионном поколении, был бесхвостой древесной обезьяной и худо-бедно умел передвигаться с помощью брахиации.
Среди человекообразных обезьян гиббон в искусстве двуногого передвижения уступает лишь человеку. Гиббон перемещается по ветке, балансируя руками. Брахиацию он применяет, лишь перемещаясь с ветки на ветку. Предпололжим, сопредок № 4 тоже умел это – и передал навык гиббонам. В этом случае память о навыке вполне могла сохраниться и у людей. Возможно, это умение просто ждет своего часа. Это догадка – впрочем, весьма приятная. При этом, заметим, обезьяны склонны время от времени ходить на двух ногах. Также можно сколько угодно теоретизировать по поводу того, был ли сопредок № 4 таким же вокалистом-виртуозом, как и его потомки-гиббоны. Возможно, способность к вокализации предвосхитила гибкость человеческого голоса – как в речи, так и в музыке. Хотя, с другой стороны, гиббоны строго моногамны, в отличие от крупных человекообразных обезьян – более близких родственников человека, а также в отличие от большинства человеческих культур, в которых традиции и иногда религиозные нормы поощряют (по меньшей мере допускают) многоженство. Мы не знаем, на кого из своих потомков в этом отношении был сильнее похож сопредок № 4: на гиббонов или на крупных человекообразных обезьян [11].
Обобщим наши догадки по поводу сопредка № 4 и робко предположим, что многие его черты были общими с потомками, то есть человекообразными обезьянами (включая нас). Скорее всего, он был мельче сопредка № 3 и проводил больше времени на деревьях. Поскольку, предполагаю я, он раскачивался на руках, руки у него были не такими длинными, как у современных гиббонов, и не слишком приспособленными для брахиации. Внешне он, скорее всего, напоминал гиббона и имел короткую морду. Хвоста у него не было. Если точнее, его хвостовые позвонки, как и у всех человекообразных обезьян, срослись во “внутренний хвостик”, то есть копчик.
Я не знаю, почему мы, человекообразные обезьяны, утратили хвост. Этому вопросу уделяется на удивление мало внимания. Сталкиваясь с подобного рода загадками, зоологи обычно прибегают к сравнениям. Нужно посмотреть на млекопитающих, выделить случаи независимого появления бесхвостости (или очень короткого хвоста) и попытаться сделать выводы. Не думаю, чтобы кто-то систематически этим занимался – а ведь стоило бы! Помимо обезьян, хвост утратили кроты, ежи, бесхвостые тенреки (Tenrec ecaudatus), морские свинки, хомяки, медведи, летучие мыши, коалы, ленивцы, агути и некоторые другие животные. Пожалуй, наибольший интерес для нас представляют бесхвостые обезьяны или обезьяны, у которых хвоста все равно что нет – как у мэнских кошек. У последних за отсутствие хвоста отвечает один ген. Гомозиготы по этому гену нежизнеспособны, поэтому он вряд ли может распространиться в ходе эволюции. Однако мне как-то пришло в голову, что первые человекообразные обезьяны, возможно, были “мэнскими”. Если так, то мутация, скорее всего, произошла в Hox-гене (см. “Рассказ Дрозофилы”). Мне совсем не нравится, когда в рамках эволюционных теорий придумывают подобных “счастливых уродов”, однако, может быть, это исключение? Было бы любопытно изучить скелеты бесхвостых мутантных разновидностей хвостатых млекопитающих и проверить, похожа ли их “бесхвостость” на “бесхвостость” человекообразных обезьян.
У варварийской обезьяны, или магрибского макака (Macaca sylvanus), хвоста нет. Вероятно, именно из-за отсутствия хвоста его ошибочно называют человекообразной обезьяной. Еще один бесхвостый макак – целебесский (Macaca nigra), которого также неверно называют человекообразной обезьяной. Джонатан Кингдон рассказывал мне, что этот макак выглядит и передвигается в точности как миниатюрный шимпанзе. А на Мадагаскаре обитает несколько видов бесхвостых лемуров, например индри. Кроме того, там жило несколько видов, включая “коаловых лемуров” (Megaladapis) и “ленивцевых лемуров”, иные из которых были размером с гориллу.
Если не пользоваться каким-либо органом, при прочих равных условиях он уменьшится по сравнению с другими – уже по причине экономии. У млекопитающих хвосты служат выполнению удивительно широкого ряда задач. Сейчас нас интересуют животные, которые живут на деревьях. Белке хвост нужен, чтобы “взлетать” при прыжке – ее прыжок на самом деле почти полет. У древесных жителей не редкость длинные хвосты, которые они используют как противовес или руль при прыжках. Лори и потто (рандеву № 8) медленно ползают по веткам, подкрадываясь к добыче, и хвосты у них очень короткие. Родственные им галаго, наоборот, весьма энергичные прыгуны с длинными пушистыми хвостами. У ленивцев (и у их австралийских близнецов – коал) хвостов нет: и те, и другие медленно ползают по деревьям.
На островах Калимантан и Суматра длиннохвостый (яванский) макак обитает на деревьях, а свинохвостый макак, его близкий родственник, живет на земле и имеет короткий хвост. У обезьян, которые активно перемещаются по деревьям, обычно длинные хвосты. Они бегают по веткам на четырех лапах, используя хвост для поддержания равновесия. Прыгая с ветки на ветку, они держат туловище горизонтально и вытягивают хвост, орудуя им как рулем. Почему же тогда у гиббонов, которые скачут по деревьям не хуже макак, нет хвоста? Возможно, причина в том, что они передвигаются совсем иначе. Как я говорил, все человекообразные обезьяны временами ходят на двух ногах. Гиббоны, когда они не пользуются брахиацией, ходят по веткам на задних конечностях, балансируя длинными передними. Легко представить, какой помехой является хвост при двуногом передвижении. Мой коллега Десмонд Моррис говорил, что паукообразная обезьяна иногда ходит на задних ногах, и тогда длинный хвост ей явно мешает. Когда гиббон собирается перепрыгнуть на другое дерево, он вертикально повисает на ветке, а не встает горизонтально, как макак.
Поэтому хвост за спиной, который не используется в качестве руля, был бы помехой для гиббона, который передвигается с помощью вертикальной брахиации (а также, предположительно, и для сопредка № 4).
Вот и все, что я могу об этом сказать. Думаю, зоологам нужно уделить больше внимания выяснению того, почему мы, человекообразные обезьяны, утратили хвост. Ведь возникает масса проблем! Например, как хвост сочетался бы с обычаем носить одежду, особенно брюки? Это придало бы новый смысл традиционному вопросу портного: “Сэр, вам ширинку налево или направо?”
Рассказ Гиббона[12]
На рандеву № 4 мы встречаем крупную группу пилигримов. И теперь могут возникнуть проблемы с установлением родства. (Чем дальше, тем затруднительнее это сделать.) Существует двенадцать видов гиббонов, принадлежащих к четырем основным группам. Это Bunopithecus (группа, представленная одним видом, известным как хулок); настоящие гиббоны Hylobates – шесть видов, самый известный – белорукий гиббон (Hylobates lar); сиаманг (Symphalangus) и номаски (Nomascus) – четыре вида “хохлатых” гиббонов. Сейчас я объясню, как построить схему эволюционных отношений, или филогению, для этих четырех групп.
Генеалогические деревья могут быть укорененными или неукорененными. В случае укорененного древа нам известно, кто является предком. Большинство деревьев в этой книге – укорененные. Неукорененные деревья, напротив, не отражают направление эволюции. Их называют звездчатыми диаграммами. В них не заложена стрела времени, и нельзя сказать, где у них начало, а где конец. Здесь приведены три примера, описывающие отношения четырех родственных групп гиббонов.
Неважно, какая ветвь окажется справа в точке ветвления, а какая – слева. Длина ветвей до сих пор не имела значения (это скоро изменится). Древовидная диаграмма, в которой длина ветвей не несет информации, называется кладограммой (в данном случае неукорененной). Порядок ветвления – вот главная информация, отраженная в кладограмме. Попробуйте перевернуть любую из боковых вилок вокруг центральной горизонтальной линии: это ничего не изменит в схеме отношений между группами.
Эти три неукорененные кладограммы описывают возможные отношения четырех видов – при условии, что мы рассматриваем лишь случаи дихотомического ветвления. Как и для укорененных деревьев, случаи разделения на три (трихотомия) и больше ветвей (политомия) мы допускаем, когда у нас недостаточно информации (“неразрешенные” ветви).
Любая неукорененная кладограмма может стать укорененной – для этого нужно указать самую старшую точку на древе (“корень”). Некоторые исследователи – те, на которых мы ссылались при рассмотрении древа в начале этого рассказа, – предлагают для гиббонов укорененную кладограмму слева. Другие предпочитают укорененную кладограмму справа. На первой схеме хохлатые гиббоны (номаски) представлены дальними родственниками всех остальных гиббонов. На второй схеме на их место помещен хулок. Несмотря на это различие, оба древа производны от одного неукорененного дерева (А). Кладограммы отличаются лишь корнем. На первой он расположен на ветви номасков, а на второй – на ветви Bunopithecus.
Как происходит “укоренение”? Самый распространенный способ – расширить древо, включив в него по меньшей мере одну “внешнюю” группу, которая является заведомо далеким родственником по отношению ко всем другим представленным группам. Например, на древе, построенном для гиббонов, внешней группой может быть орангутан или горилла – а еще лучше слон или кенгуру. Можно сколько угодно сомневаться по поводу взаимоотношений групп гиббонов, но мы точно знаем, что общий предок любого гиббона с большими человекообразными обезьянами (или слоном) старше, чем общий предок любого гиббона с любым другим гиббоном. Поэтому, строя древо, включающее гиббонов и крупных человекообразных обезьян, мы не ошибемся, поместив корень где-то между ними.
Легко заметить, что три неукорененных древа, которые я нарисовал, описывают все возможные дихотомические деревья для четырех групп. Для пяти групп будет 15 таких деревьев. Но не стоит и пытаться сосчитать количество возможных деревьев для, скажем, 20 групп. Их сотни миллионов миллионов миллионов[13]. Число резко возрастает с ростом числа групп, которые мы желаем классифицировать, и даже у самого мощного компьютера такие расчеты могут занять целую вечность. Однако в принципе задача довольно проста. Из всех возможных деревьев нужно выбрать те, которые лучше всего объясняют сходства и различия наших групп.
Но что значит – “лучше всего объясняют”? Когда мы рассматриваем выборку животных, количество сходных и отличных черт может оказаться практически бесконечным. Сосчитать их труднее, чем кажется. Нередко один “признак” является неотделимой частью другого. И если мы сочтем эти признаки независимыми, окажется, что на самом деле мы учли одни и те же признаки дважды. Представьте, например, многоножек четырех видов: A, B, C и D. Многоножки A и B сходны во всем, кроме того, что у А конечности красные, а у B – синие. Многоножки C и D сходны друг с другом и отличаются от A и B – но у C конечности красные, а у D – синие. Если мы сочтем цвет конечностей одним “признаком”, мы справедливо поместим A и B в одну группу, а C и D – в другую. Но если мы будем считать каждую ножку из ста отдельным признаком, количество этих признаков перевесит все остальные, и тогда A сгруппируется с C, а B – с D. Очевидно, что в этом случае мы просто сто раз посчитали один и тот же признак. А на самом деле это один признак, потому что цвет всех ста ножек определяется одним эмбриологическим “событием”.
То же верно и для двусторонней симметрии: эмбриогенез таков, что, за редкими исключениями, одна сторона тела животного является зеркальным отражением второй. Ни один зоолог, строя кладограмму, не будет считать дважды “левый” и “правый” признак. Впрочем, не всегда очевидно, какие признаки независимы. Голубю нужна крупная грудина для крепления летательных мышц. А нелетающим птицам, например киви, она не нужна. Должны ли мы считать мощную грудину и способные к полету крылья двумя независимыми признаками, отличающими голубя от киви? Или сочтем их единым признаком на том основании, что состояние одного признака определяет состояние второго – или, по крайней мере, уменьшает его изменчивость? В случае многоножек и зеркальной симметрии правильный ответ очевиден. А в случае грудины – нет. На этот счет может иметься две вполне обоснованные точки зрения.
До сих пор мы говорили о внешнем сходстве и различии. Однако внешние признаки эволюционируют лишь в том случае, если они – проявления последовательностей ДНК. Сегодня мы можем непосредственно сравнить последовательности ДНК. Дополнительное преимущество ДНК заключается в том, что она имеет длинные цепочки, и “текст” ДНК предоставляет гораздо больше признаков, которые можно считать и сравнивать. Проблемы крыльев и грудин просто тонут в огромном потоке данных, которые дает нам ДНК. Более того, многие различия в ДНК “невидимы” для естественного отбора и поэтому являются более “чистыми” свидетельствами родства. Например, многие сочетания нуклеотидов в ДНК синонимичны: они кодируют одну и ту же аминокислоту. Мутация, меняющая сочетание нуклеотидов на синонимичное, невидима для естественного отбора. Однако для генетика такая мутация не хуже любой другой. То же относится и к “псевдогенам” (обычно это случайные копии работающих генов), и ко многим другим “мусорным” последовательностям ДНК, которые располагаются на хромосомах, но не считаются и не используются. Независимая от естественного отбора ДНК получает возможность свободно мутировать, а это обеспечивает специалистов по систематике высокоинформативными данными. Это не отменяет того, что некоторые мутации могут иметь реальный и значительный эффект. Их замечает отбор, они отвечают за видимую глазу красоту и сложность всего живого.
ДНК тоже подвержена проблеме повторного подсчета и нередко представляет собой молекулярный аналог конечностей многоножки. Иногда последовательность представлена многими копиями в разных частях генома. Примерно половина ДНК человека состоит из множественных копий бессмысленных последовательностей, так называемых мобильных элементов, которые, возможно, являются паразитами, захватившими аппарат репликации ДНК, чтобы расселиться по геному. Один из этих паразитических элементов, Alu, у большинства людей представлен более чем миллионом копий. (С ним мы еще встретимся в “Рассказе Ревуна”.) Даже в случае кодирующих участков ДНК гены в некоторых случаях могут быть представлены десятками идентичных (или почти идентичных) копий. Однако на практике повторный подсчет – не такая уж большая проблема: дублированные последовательности ДНК довольно легко обнаружить.
Опасно другое. Иногда обширные области ДНК проявляют таинственное сходство с последовательностями ДНК отдаленных видов. Никто не сомневается, что птицы ближе к черепахам, ящерицам, змеям и крокодилам, чем к млекопитающим (рандеву № 16). Однако последовательности ДНК птиц и млекопитающих имеют большее сходство, чем можно ожидать. И у тех, и у других в некодирующей ДНК наблюдается избыток пар Г – Ц. Пары Г – Ц химически стабильнее пар A – T. Возможно, теплокровные виды (птицы и млекопитающие) нуждаются в более “крепкой” ДНК. Каково бы ни было объяснение, мы должны быть осторожны и не позволять этому смещению Г – Ц убедить нас в том, что все теплокровные животные – близкие родственники. Хотя специалисты по систематике утверждают, что ДНК – это все, о чем можно мечтать, нельзя забывать: мы по-прежнему многого не понимаем в геноме.
Как использовать информацию, заключенную в ДНК? Литературоведы, изучая происхождение текстов, используют ту же технику, что и эволюционные биологи. И, хотя это звучит неправдоподобно, одним из лучших примеров является проект по изучению “Кентерберийских рассказов”. Участники этого международного проекта использовали инструменты эволюционной биологии, чтобы проследить историю 85 списков “Кентерберийских рассказов”. Эти манускрипты – наша главная надежда на восстановление утраченного оригинала. Как и ДНК, текст Чосера уцелел благодаря многократному копированию. При этом каждый раз при копировании возникали случайные изменения. Тщательно оценив накопленные отличия, исследователи реконструируют историю копирования и строят эволюционное древо – потому что это настоящий эволюционный процесс, при котором с каждым поколением накапливаются ошибки. Способы реконструкции эволюции ДНК и текста настолько похожи, что каждый из них может служить иллюстрацией другого.
Отвлечемся от гиббонов и займемся Чосером, а именно четырьмя из 85 списков “Кентерберийских рассказов”. Эти рукописи называются: “Британская библиотека” (British Library), “Крайст-Черч” (Christ Church), “Эджертон” (Edgerton) и “Хенгурт” (Hengwrt)[14]. Вот две первые строки “Общего пролога”:
- Когда Апрель обильными дождями
- Разрыхлил землю, взрытую ростками…[15]
Теперь сравним. Список из Британской библиотеки гласит:
- Whan that Aprylle / wyth hys showres soote
- The drowhte of Marche / hath pcede to the rote
“Крайст-Черч”:
- Whan that Auerell wt his shoures soote
- The droght of Marche hath pced to the roote
“Эджертон”:
- Whan that Aprille with his showres soote
- The drowte of marche hath pced to the roote
“Хенгурт”:
- Whan that Aueryll wt his shoures soote
- The droghte of March / hath pced to the roote
Первое, что нужно сделать с последовательностью ДНК или текстом, – выявить сходства и различия. Для этого нужно их “выровнять” – а это бывает не так-то просто: тексты могут быть фрагментарными и иметь разную длину. Здесь очень помогает компьютер, но чтобы выровнять первые две строки “Общего пролога”, он не понадобится. На рисунке выделены 14 позиций, по которым тексты не совпадают.
Вторая и пятая позиции представлены даже не двумя вариантами, а тремя. В целом это дает 16 “различий”. После того, как мы составили список различий, нужно определить, какое древо лучше всего их объясняет. Есть множество способов это сделать, и все их можно применить и к животным, и к текстам. Самый простой пример – группировка текстов на основе общего сходства. Как правило, при этом используют варианты следующего метода. Сначала мы находим пару наиболее сходных текстов. Затем мы используем эту пару в качестве единого усредненного текста и сравниваем его с оставшимися, чтобы найти следующую пару наиболее сходных текстов. Так мы последовательно формируем новые пары, пока не получится генеалогическая схема. Такой способ построения деревьев используется чаще всего и называется методом поиска ближайшего соседа (neighbourpmmg). Он прост, но не учитывает логику эволюционного процесса: мы просто оцениваем сходство. Поэтому сторонники “кла-дистического” подхода в систематике (он основан на принципах эволюции) предпочитают иные методы. Первым был разработан метод парсимонии (экономии).
Экономия, как мы узнали из “Рассказа Орангутана”, означает здесь экономичность объяснения. В эволюции (животного ли, манускрипта ли) самым экономичным является объяснение, подразумевающее наименьшее число эволюционных изменений. Если два текста объединены общим признаком, самое экономичное объяснение будет гласить: оба текста унаследовали этот признак от общего предка. Конечно, и у этого правила есть исключения, однако чаще всего оно верно. Метод парсимонии – по крайней мере в теории – сравнивает все возможные деревья и выбирает то, в котором количество изменений минимально.
Когда мы сравниваем деревья по их экономичности, некоторые виды признаков оказываются бесполезными. Признаки, уникальные для манускрипта или вида животного, неинформативны. В методе поиска ближайшего соседа такие признаки учитываются, однако метод парсимонии целиком их игнорирует. Метод парсимонии опирается на информативные признаки, то есть такие, которые наблюдаются более чем в одном манускрипте. Предпочтительным древом является объясняющее максимальное количество информативных признаков общим происхождением. В строках Чосера пять таких информативных признаков. Четыре из них делят манускрипты на следующие группы:
{“Британская библиотека” + “Эджертон”} и (“Крайст-Черч” + “Хенгурт”}
Эти признаки выделены первой, третьей, седьмой и восьмой вертикальными линиями. Пятый признак – косая черта – выделен двенадцатой вертикальной линией. По этому признаку манускрипты подразделяются на другие группы:
{“Британская библиотека” + “Хенгурт”} и {“Крайст-Черч” + “Эджертон”}
Полученные результаты противоречат друг другу. Мы не можем построить древо, в котором каждое изменение отображалось бы лишь один раз. Самым приемлемым окажется древо, изображенное ниже (заметьте – оно неукорененное). Эта схема сокращает противоречия до минимума: мы повторно учитываем лишь один признак – косую черту.
Вообще-то я не уверен, что мы сделали правильное предположение. В текстах часто встречаются совпадения и реверсии, особенно если смысл строк при этом не меняется. Средневековый переписчик наверняка не испытывал угрызений совести, изменяя написание, и еще меньше его волновали вставки или удаления знаков, например косой черты. В этом случае информативнее такие изменения, как перестановка слов. В генетике аналогами таких изменений являются “редкие геномные изменения”: крупные вставки, делеции и дупликации ДНК. Мы можем оценить информативность, присвоив большее или меньшее значение (вес) различным типам признаков. Недостоверные или слишком частые изменения при подсчете будут иметь меньший вес. А редкие изменения, которые служат надежными показателями родства, – больший вес. Повышенный вес признака говорит о том, что мы не хотим учитывать его дважды. Таким образом, наиболее экономное древо – то, которое имеет наименьший общий вес.
Метод парсимонии широко используется для поиска эволюционных деревьев. Но в том случае, когда конвергенций и реверсий слишком много – а это случается и с последовательностями ДНК, и с текстами Чосера, – метод парсимонии может оказаться недостоверным. Эта проблема известна как “эффект притяжения длинных ветвей”.
Кладограммы – как укорененные, так и неукорененные – отражают лишь порядок ветвления. Филограммы, или филогенетические деревья, похожи на кладограммы, но в них длина ветвей несет дополнительную информацию. Обычно длина ветвей отражает эволюционное расстояние: длинные ветви обозначают крупные изменения, а короткие – мелкие. На основе первой строки “Кентерберийских рассказов” можно построить следующую филограмму.
Здесь длина ветвей не слишком различается. Но представьте, что будет, если два манускрипта сильно отличаются от двух других. Тогда ветви первых манускриптов будут очень длинными. Однако изменения могут оказаться не уникальными. Изменения могут случайно оказаться идентичными изменениям в другом месте древа. Но с наибольшей вероятностью (именно в этом заключается проблема) они совпадут с изменениями на другой длинной ветви. Ведь длинные ветви – это те, в которых произошло наибольшее число изменений. И если изменений окажется слишком много, две длинные ветви на филограмме будут отображаться как родственные, даже если это не так. Таким образом, метод парсимонии, основываясь на простом подсчете изменений, может ошибочно сгруппировать две самые длинные ветви, “притянуть” их друг к другу.
Эффект притяжения длинных ветвей – серьезная помеха для систематики. Он проявляется везде, где много конвергенций и реверсий. К сожалению, эту проблему нельзя решить простым увеличением объема рассматриваемого текста. Наоборот, чем больше текст, тем выше вероятность обнаружения случайных совпадений. Про такие деревья говорят, что они лежат в “зоне Фельзенстайна” (звучит устрашающе!), названной в честь американского биолога Джо Фельзенстайна. Увы, ДНК особенно подвержена эффекту притяжения длинных ветвей. Основная причина в том, что в ДНК всего четыре “буквы”. Поскольку большинство изменений затрагивают всего одну “букву”, случайные мутации с высокой вероятностью могут привести к совпадениям. Так возникает притяжение длинных ветвей. Очевидно, что для таких случаев нужна альтернатива методу парсимонии. Она существует – это метод правдоподобия. В последнее время он используется все чаще.
Оценка правдоподобия требует больше вычислительных мощностей, чем метод парсимонии, поскольку здесь мы учитываем длину ветвей. Таким образом, приходится иметь дело с еще большим количеством деревьев: вдобавок к рассмотрению возможных схем ветвления мы должны учитывать возможные длины ветвей. Геркулесов труд! Поэтому, несмотря на упрощенные методы вычисления, компьютеры пока могут подвергнуть анализу небольшое количество видов.
Термин “правдоподобие” здесь имеет вполне точное значение. Возьмем древо определенной формы (с учетом длины ветвей). Из всех возможных эволюционных траекторий, посредством которых может сформироваться филогенетическое древо данной формы, всего несколько могут привести к тому тексту, который мы сейчас видим. "Правдоподобие” данного древа – это ничтожно малая вероятность получения реально существующих текстов, а не каких-нибудь текстов, которые могут появиться на таком древе. Величина правдоподобия для древа очень мала, однако это не мешает сравнить одну малую величину с другой, чтобы выбрать нужную.
Неукорененное филогенетическое древо первых 250 строк 24 списков "Кентерберийских рассказов". Здесь представлен набор списков, изученный в рамках проекта "Кентерберийские рассказы". Сокращения соответствуют тем, что использованы в проекте. Схема построена методом парсимонии, на каждой ветви указаны индексы бутстреп-поддержки. Для четырех списков, которые обсуждаются нами, указаны их полные названия.
Выбирать "лучшее” древо методом правдоподобия можно по-разному. Самый простой способ – искать наиболее правдоподобное древо. Это метод максимального правдоподобия. Однако то, что это наиболее правдоподобное древо, вовсе не означает, что другие деревья не окажутся почти столь же правдоподобными. Совсем недавно было предложено не искать одно самое правдоподобное древо, а рассматривать все возможные. При этом степень "доверия” к древу должна зависеть от его правдоподобия. Этот подход представляет собой альтернативу методу правдоподобия и известен как байесовский метод. Если схема ветвления подтверждается большим количеством правдоподобных деревьев, мы заключаем, что эта схема с высокой вероятностью верна. Конечно, как и в методе максимального правдоподобия, мы не можем проверить все деревья. Но существуют способы упрощения вычислений, и они довольно неплохо работают.
Степень нашего доверия древу, которое мы в итоге выберем, зависит от того, насколько мы уверены в правильности каждого разветвления. Поэтому возле точек ветвления часто указывают степень “уверенности” в них. При использовании байесовского метода правдоподобие точек ветвления вычисляется автоматически, однако для других методов, таких как парсимония или максимальное правдоподобие, необходимы альтернативные способы подсчета. Чаще всего используют метод бутстрепа: многократно обсчитываются выборки данных, и оценки сравниваются с результатами для всего древа. Так мы можем понять, насколько древо устойчиво к ошибкам. Чем больше индекс бутстреп-поддержки, тем надежнее точка ветвления. Правда, точно интерпретировать полученные индексы бывает непросто. По сходному алгоритму работают методы “складного ножа” (jackknife) и “поддержки Бремера”. Все они служат для оценки достоверности точек ветвления.
Прежде чем оставить литературу, рассмотрим итоговое древо, построенное для первых 250 строк в 24 манускриптах Чосера. Это филограмма, на которой информативна не только схема ветвления, но и длина ветвей. На схеме видно, какие списки почти идентичны, а какие сильно отличаются от остальных. Эта филограмма неукорененная, то есть не указывает на то, какой из 24 манускриптов ближе всех к “оригиналу”.
Вернемся к гиббонам. Принцип парсимонии предполагает существование четырех групп. Ниже приведена укорененная диаграмма, основанная на морфологических признаках. Здесь виды рода Hylobates (настоящие гиббоны) группируются вместе, как и виды рода Nomascus. Обе группы поддерживаются высокими индексами бутстреп-поддержки (указаны над ветвями). Однако в нескольких местах порядок ветвлений не определен. Хотя Hylobates и Bunopithecus вроде бы формируют группу, индекс бутстреп-поддержки (63) представляется неубедительным для тех, кто умеет читать подобные руны. Морфологических признаков для построения древа недостаточно.
Укорененная кладограмма гиббонов, построенная на основе морфологии. Geissmann [100].
По этой причине Кристиан Роос и Томас Гайсман, ученые из Германии, обратились к молекулярной генетике, а именно к участку митохондриальной ДНК, который называют контрольным регионом. Взяв ДНК шести гиббонов, они расшифровали последовательности, выровняли их и провели анализ с помощью методов поиска ближайшего соседа, парсимонии и максимального правдоподобия. Самый убедительный результат был получен с помощью метода максимального правдоподобия, который лучше других методов справляется с эффектом притяжения длинных ветвей. Итоговое древо, где показаны отношения между четырьмя группами, приведено здесь. Значения бутстреп-поддержки на этом древе вполне убедительны. Так что, на мой взгляд, это то, что нам нужно.
Кладограмма гиббонов, построенная с помощью метода максимального правдоподобия по данным ДНК. Roos and Geissmann [246].
Видообразование у гиббонов произошло сравнительно недавно. Однако если изучать все более удаленные виды, которые будут разделены все более длинными ветвями, в конце концов даже изощренные методы Байеса и максимального правдоподобия откажутся нам служить. В определенный момент недопустимо большая доля сходств окажется случайной. Когда это происходит с ДНК, говорят, что наступило насыщение. И тогда ни один метод не поможет реконструировать схему родственных отношений: действие времени заглушает “филогенетический” сигнал. Особенно остро этот вопрос стоит в отношении нейтральных мутаций ДНК. Давление естественного отбора не позволяет генам сбиваться с пути, удерживая их в узком диапазоне. В некоторых случаях самые важные функциональные гены могут оставаться практически неизменными сотни миллионов лет. Однако для псевдогена, с которого никогда ничего не считывается, таких промежутков времени достаточно для безнадежно сильного насыщения. В таких случаях нам приходится искать другие данные. Одна из самых перспективных идей – использование редких геномных мутаций, о которых я упоминал. Эти изменения затрагивают значительные участки ДНК, а не одну “букву”. Поскольку такие перестройки редки и, как правило, уникальны, проблема случайного сходства не возникает. Эти мутации могут выявлять неожиданные родственные связи. Мы убедимся в этом, когда к толпе пилигримов присоединятся гиппопотамы. (Вот увидите, они расскажут удивительные вещи!)
А теперь обобщим то, что узнали из “Рассказа Митохондриальной Евы” и “Рассказа Неандертальца”. Cчитается, что для группы видов должно существовать лишь одно эволюционное древо. Однако из “Рассказа Митохондриальной Евы” видно, что на основе разных участков ДНК (а также для разных признаков или разных частей тела) можно построить разные деревья. Мне кажется, эта проблема заложена в самой идее филогенетических деревьев видов. Ведь вид представляет собой сложную мозаику фрагментов ДНК, полученных из разных источников. Мы увидели, что каждый ген, да и каждая “буква” ДНК, эволюционирует независимо. Для каждого фрагмента ДНК и каждого признака организма можно построить свое эволюционное древо.
С доказательствами этого мы сталкиваемся каждый день – и поэтому их не замечаем. Если предьявить марсианину гениталии мужчины, женщины и самца гиббона, пришелец, не колеблясь, решит, что наиболее близким родством связаны два самца. И правда: ген, определяющий мужской пол (SRY), никогда не бывал в теле женщины – а если и бывал, то задолго до того, как мы разошлись с гиббонами. Морфологи традиционно делают исключение для половых признаков, избегая “бессмысленных” классификаций. Однако такого рода проблемы встречаются на каждом шагу. Мы столкнулись с этим в “Рассказе Митохондриальной Евы”, когда говорили о группе крови ABo. Если рассматривать гены группы крови, окажется, что мой ген группы крови B сближает меня с шимпанзе с группой крови B, а не A. Все это касается не только генов, определяющих пол, или генов группы крови. Нет, при определенных обстоятельствах эта проблема затрагивает абсолютно все гены и признаки. Большинство молекулярных и морфологических признаков указывает на то, что шимпанзе – наш ближайший родственник. Однако меньшая доля признаков указывает на то, что наш ближайший родственник – горилла, или что шимпанзе ближе всего к гориллам, а не к человеку.
Не удивляйтесь! Популяция, предковая для всех трех видов, должна быть очень изменчивой, и у каждого гена в популяции должно быть несколько вариантов. Каждый из вариантов передается по своей линии. Вполне возможно, например, что человек и горилла получили некий ген от одной линии, а шимпанзе – от другой. После этого нужно только, чтобы разошедшиеся в древности генетические линии тянулись непрерывно до точки расхождения человека и шимпанзе. И получится, что человек произошел от одной линии, а шимпанзе – от другой[16].
Приходится признать, что одно древо не описывает весь эволюционный сюжет. Ничто не мешает нам продолжать строить деревья для видов, однако нужно помнить, что эти деревья представляют не более чем обобщение множества генных деревьев. Интерпретировать деревья можно двумя способами. Первый – традиционная генеалогическая интерпретация. Один вид является ближайшим родственником другого, если из всех рассмотренных видов именно с ним его связывает самый поздний общий предок. Второй способ интерпретации, мне кажется, только предстоит освоить. Согласно этому подходу, построенное для группы видов древо отражает родственные отношения большей части генов. То есть древо показывает результаты, за которые гены высказались “большинством голосов”.
Мне больше нравится идея голосования генов. Поэтому, когда я говорю о родстве видов, его нужно понимать именно так. Все филогенетические деревья, которые я здесь обсуждаю – касаются ли они животных, растений, грибов или бактерий, – нужно рассматривать как схемы, отражающие идеи “генного большинства”.
Узконосые обезьяны. Это общепризнанное филогенетическое древо, построенное примерно для ста видов обезьян Старого Света. (Кружки на концах ветвей указывают на количество видов в каждой группе: отсутствие кружка означает 1–9 известных видов, небольшой кружок соответствует 10–99 видам, круг побольше – 100–999 и т. д. Каждая из представленных здесь четырех групп объединяет 10–99 видов.)
На рис. (слева направо): мандрил (Mandrillus sphinx), краснохвостая мартышка (Cercopithecus ascanius), носач (Nasalis larvatus), ангольский чернобелый колобус (Colobus angolensis).
Рандеву № 5
Обезьяны Старого Света
Приближаясь к рандеву № 5 и готовясь к встрече с сопредком № 5 (нашим прародителем приблизительно в полуторамиллионном поколении), мы пересекаем важный (хотя и произвольно выбранный) рубеж. Впервые с начала путешествия мы вступаем в другой геологический период, палеоген, и оставляем неоген. В следующий раз, пересекая границу, мы окажемся в населенном динозаврами мире – в меловом периоде. Рандеву № 5 проходит около 25 млн лет назад, в олигоценовую эпоху палеогена. Это последняя остановка на дороге в прошлое, во время которой климат и растительность покажутся нам знакомыми. Дальше мы не увидим открытых поросших травой пространств, типичных для неогена, или мигрирующих стад травоядных. Около 25 млн лет назад Африка была полностью изолирована. Даже от ближайшей к ней Испании ее отделял пролив, по ширине равный сегодняшнему Мозамбикскому проливу. На этом огромном острове – Африке – наша команда пополнится новыми участниками, весьма ловкими и сообразительными. Встречайте обезьян Старого Света – первых наших хвостатых спутников.
Сейчас насчитывается почти сто видов обезьян Старого Света. Некоторые когда-то эмигрировали и живут в Азии (см. “Рассказ Орангутана”). Их делят на две крупные группы. Первую составляют африканские колобусы и азиатские лангуры и носачи, вторую – азиатские макаки плюс африканские павианы, мартышки и так далее.
Последний общий предок всех живущих ныне обезьян Старого Света жил примерно на 11 млн лет позднее сопредка № 5, то есть около 14 млн лет назад. Наиболее репрезентативный ископаемый род того времени – викториапитек (Victoriapithecus), от скелета которого сохранилось более тысячи фрагментов, включая отменный череп с острова Мабоко на озере Виктория. Итак, 14 млн лет назад обезьяны Старого Света приветствуют своего предка. Может быть, это сам викториапитек, а может, кто-то похожий на него. Затем пилигримы отправляются в прошлое и на отметке 25 млн лет присоединяются к человекообразным обезьянам и сопредку № 5.
На кого был похож сопредок № 5? Возможно, он напоминал египтопитеков (Aegyptopithecus), которые жили 7 млн лет ранее. Пытаясь реконструировать облик сопредка № 5, применим эмпирическое правило. С высокой вероятностью сопредок № 5 имел признаки, общие для его потомков – узконосых обезьян (Catarrhina), к которым относят человекообразных обезьян и обезьян Старого Света. Так, у сопредка № 5, скорее всего, были узкие, направленные вниз ноздри – в противоположность ноздрям широконосых обезьян Нового Света (Platyrrhina). Для самок, скорее всего, был характерен настоящий менструальный цикл (ежемесячная овуляция), который наблюдается у человекообразных обезьян и обезьян Старого Света, но которого нет у обезьян Нового Света. Вероятно, у сопредка № 5 слуховой проход был обрамлен трубкой барабанной кости, поддерживающей барабанную перепонку, тогда как у обезьян Нового Света барабанная перепонка поддерживается кольцом, и трубки у них нет.
Был ли у сопредка № 5 хвост? Скорее всего, да. Поскольку отсутствие хвоста – это самый наглядный признак человекообразных обезьян, очень хочется сделать вывод, что разделение двух ветвей 25 млн лет назад совпадает со временем утраты хвоста. На самом деле сопредок № 5 был, по-видимому, хвостатым, как и почти все млекопитающие, а сопредок № 4 – бесхвостым, как и все его потомки, современные человекообразные обезьяны. Но в какой момент между сопредками №№ 4 и 5 утрачен хвост, мы не знаем. Это, впрочем, не так важно: мы же не думаем, что обычная обезьяна, утратив хвост, вдруг стала человекообразной. Африканский ископаемый род Proconsul, например, тоже вполне может считаться человекообразной, а не обычной, обезьяной, потому что после разделения двух ветвей в момент рандеву № 5 он оказался на стороне человекообразных обезьян. Но то, что он относится к линии человекообразных обезьян, еще не проясняет вопрос о наличии хвоста. (Данные в совокупности указывают на то, что у проконсула хвоста не было.)
Как же называть животных, которые жили между сопредком № 5 и проконсулом и еще не утратили хвост? Строгий последователь кладистического подхода назвал бы их человекообразными обезьянами, потому что они принадлежат к их ветви. Какой-нибудь другой специалист по систематике назвал бы их обычными обезьянами, потому что у них есть хвост. А я повторю: глупо зацикливаться на названиях.
Обезьяны Старого Света, Cercopithecidae, образуют кладу, то есть группу, которая включает всех потомков одного предка. А вот обезьяны как таковые (monkeys), к которым относятся обезьяны Старого Света и обезьяны Нового Света, кладу не образуют, потому что происходят от разных предков. Обезьяны Старого Света ближе к человекообразным обезьянам, чем к обезьянам Нового Света. Вместе с человекообразными обезьяны Старого Света образуют группу узконосые обезьяны (Catarrhini). И, наконец, все три группы – обезьяны Старого Света, обезьяны Нового Света и человекообразные – составляют кладу Anthropoidea. Обезьяны Старого и Нового Света (monkeys) образуют искусственную (парафилетическую) группу, потому что она включает всех широконосых и отчасти узконосые обезьяны – за исключением человекообразных. Вообще обезьян Старого Света было бы удобнее называть хвостатыми человекообразными обезьянами. Как я уже говорил, Catarrhme означает “направленный вниз нос”. В этом отношении мы – достойные представители Catarrhme. Вольтеровский доктор Панглосс как-то заметил, что “носы созданы для очков, вот мы и стали носить очки”. Он мог бы добавить, что наши направленные вниз ноздри препятствуют попаданию в нос дождя. А Platyrrhme означает “плоский (широкий) нос”. Таким образом, носы стали не только отличительным признаком двух крупнейших групп приматов, но и дали им названия.
Рандеву № 6
Обезьяны Нового Света
Рандеву № 6 назначено около 40 млн лет назад. Здесь широконосые обезьяны Нового Света (Platyrrhini) встречаются с нами, людьми, и с первым антропоидом – сопредком № 6, нашим прародителем примерно в трехмиллионном поколении. Землю покрывали густые тропические леса, и даже Антарктида (по крайней мере частично) была зеленой. Хотя сейчас все широконосые обезьяны живут в Южной или Центральной Америке, рандеву № 6 почти наверняка произошло не там. Полагаю, это случилось в Африке. Группа приматов с плоским носом, не оставивших в Африке ныне живущих потомков, перебралась в Южную Америку от 25 млн лет (к этому времени относятся первые ископаемые южноамериканские обезьяны) до 40 млн лет назад (рандеву № 6). В то время Южная Америка и Африка находились друг к другу ближе, чем теперь, а уровень моря был ниже. Поэтому между Западной Африкой и Южной Америкой могла существовать цепь островов, и обезьяны переправлялись с одного острова на другой на плотах из фрагментов мангровых растений – на них вполне можно жить некоторое время. Направления течений в те времена были подходящими для таких спонтанных путешествий. Другая крупная группа животных, дикобразоподобные грызуны ((Hystncognatha), судя по всему, прибыла в Южную Америку примерно тогда же. Причем, похоже, они тоже эмигрировали из Африки: их даже назвали в честь африканского дикобраза – Hystnx. Возможно, обезьяны переправились в Африку по той же цепи островов, что и грызуны, и пользовались теми же течениями. Хотя они путешествовали, вероятно, на разных плавсредствах.
Значит ли это, что приматы Нового Света произошли от одной-единственной предковой популяции, эмигрировавшей из Африки?
Широконосые обезьяны. Филогенетическое древо примерно для ста видов обезьян Нового Света. Филогения обезьян до сих пор вызывает разногласия, и я привожу общепринятую схему.
На рис. (слева направо): золотистая игрунка (Leontopithecus rosalia); мирикина (Aotus trivirgatus); беличий саймири, или обыкновенная беличья обезьяна (Saimiri sciureus); черный ревун (Alouatta caraya); саки-монах (Pithecia monachus).
Или приматы переправлялись с материка на материк неоднократно? А если так, можно ли это доказать? Если говорить о грызунах, то в Африке до сих пор живут дикобразоподобные грызуны – в том числе африканские дикобразы, землекоповые, скальные крысы и камышовые хомячки. Если бы оказалось, что некоторые южноамериканские грызуны – близкие родственники одной африканской группы (например дикобразов), а другие – близкие родственники другой (например землекоповых), это явилось бы доказательством того, что грызуны эмигрировали в Южную Америку не однажды. Однако не похоже, что южноамериканские грызуны происходят от разных предков, и, скорее всего, миграция грызунов стала однократным событием. Впрочем, это доказательство не то чтобы очень убедительно. Что касается приматов Южной Америки, то они тоже гораздо ближе друг к другу, чем к любому африканскому примату. Это говорит и о том, что с высокой вероятностью волна миграции приматов была единичной. Но, опять-таки, это не самое убедительное доказательство.
Пользуясь случаем, напомню, что неправдоподобие истории о переправе на плотах – еще не повод сомневаться в ней. Странно, правда? Ведь в обыденной жизни все наоборот: чем невероятнее история, тем больше у нас оснований полагать, что она не могла произойти. Однако с вопросом межконтинентальной переправы обезьян, грызунов или кого угодно дело обстоит немного иначе. Ведь переправа должна была произойти лишь однажды, а времени на это было гораздо больше, чем мы можем представить. Вероятность того, что плот с беременной самкой обезьяны достиг противоположного берега, составляет 1: 10000. В рамках человеческой жизни такая вероятность равна нулю. Однако если в нашем распоряжении 10 млн лет, это событие становится почти неизбежным. Оно должно было произойти всего один раз, а после этого все было просто. Счастливая самка родила детей, и они основали династию, которая в итоге дала все разнообразие обезьян Нового Света. Пословица гласит, что большие дубы вырастают из маленьких желудей.
Как бы то ни было, случайные переправы на плотах не так уж редки. Мелких животных довольно часто можно увидеть дрейфующими по морю. А иногда – не очень маленьких. Длина зеленой игуаны может достигать метра, а то и двух. Процитирую заметку Элен Ценски и ее соавторов, опубликованную в журнале “Нейчур”:
Четвертого октября 1995 года не менее пятнадцати особей зеленой игуаны (Iguana iguana) появилось на восточном побережье карибского острова Ангилья. Ранее этот вид на острове не встречался. Игуаны прибыли на плоту из вырванных с корнем деревьев (длина некоторых превышала девять метров). Местные рыбаки говорят, что плот был очень велик, и им потребовалось два дня, чтобы разобрать его. Они рассказали, что видели игуан на берегу и на плавающих стволах в бухте.
По-видимому, игуаны, жившие на другом острове, устроились на ночлег в деревьях, которые унес в море ураган – либо “Луис”, пронесшийся над Восточными Карибами 4–5 сентября, либо “Мэрилин”, который бушевал две недели спустя. Ни один из этих ураганов не прошел над Ангильей. Впоследствии Ценски и ее коллеги ловили или наблюдали зеленых игуан на Ангилье и на островке в полукилометре от берега. В 1998 году популяция зеленых игуан, включавшая по меньшей мере одну фертильную самку, еще обитала на Ангилье. Заметим, что игуаны и родственные им ящерицы отлично колонизируют острова. Игуаны обитают даже на Фиджи и Тонга – а ведь эти места гораздо труднодоступнее, чем острова Вест-Индии.
Кроме передвижения по ветвям на четырех конечностях, как делают многие обезьяны Старого Света, некоторые обезьяны Нового Света умеют висеть на ветках, как гиббоны, и даже пользоваться брахиацией. У всех обезьян Нового Света длинный хвост, а у паукообразных обезьян, шерстистых обезьян и ревунов он очень цепкий и служит дополнительной конечностью. Эти обезьяны могут спокойно висеть на одном хвосте – или на руке, ноге и хвосте (в любом сочетании). Наблюдая за паукообразной обезьяной, так и ждешь, что на конце ее хвоста найдутся несколько цепких пальцев[17].
Среди обезьян Нового Света есть виртуозные прыгуны. Кроме того, здесь обитают совиные обезьяны – единственная группа антропоидов, ведущая ночной образ жизни (у них большие, как у кошек или сов, глаза – таких нет больше ни у кого из обезьян Старого или Нового Света), и карликовые игрунки размером с соню – самые мелкие из антропоидов. Однако самые крупные из обезьян Нового Света – обезьяны-ревуны – по размеру напоминают крупных гиббонов. Ревуны похожи на гиббонов способностью раскачиваться на руках. Кроме того, и ревуны, и гиббоны – очень шумные животные. Однако если крики гиббонов напоминают сирены полицейских машин, то группа ревунов с их раздутыми горловыми мешками, которые служат резонаторами, скорее напоминает эскадрилью реактивных истребителей, с ревом несущихся над деревьями.
Рассказ Ревуна[18]
Новые гены появляются не из воздуха. Они образуются при дупликации прежних генов. После этого каждый из них идет своим путем, приобретая мутации и подвергаясь действию естественного отбора и дрейфа генов. Обычно мы не видим, как это происходит, но, подобно следователям на месте преступления, можем попытаться воссоздать произошедшее на основе улик. Замечательный пример – гены, ответственные за цветовое зрение.
Млекопитающие очень долго были ночными существами. День принадлежал динозаврам, у которых, если судить по ныне живущим родственникам, было отличное цветовое зрение. Также не без оснований можно предположить, что цветовое зрение имелось и у далеких предков млекопитающих – звероподобных рептилий (тероморфов), населявших Землю до динозавров. Однако за время, которое млекопитающие провели во тьме, их глаза должны были научиться улавливать каждый доступный фотон. Неудивительно, что способность различать цвета они почти утратили (о причинах мы поговорим в “Рассказе Слепой пещерной рыбы”). До сих пор у большинства млекопитающих (даже тех, которые вернулись к дневному образу жизни) слабое цветовое зрение – двухроматическое. Речь о количестве типов светочувствительных клеток – колбочек – в сетчатке. У человека и остальных узконосых обезьян, а также у обезьян Старого Света, три типа колбочек: красные, зеленые и синие. То есть у нас зрение трихроматическое. Однако есть данные, что мы заново приобрели третий тип колбочек после того, как его утратили наши ночные предки. У большинства других позвоночных, например рыб или рептилий (но не млекопитающих!), зрение трихроматическое (имеются колбочки трех типов) или тетрахроматическое (четыре типа). У птиц и черепах зрение бывает еще сложнее. Что касается обезьян Нового Света, особенно ревунов, то они в особенном положении.
Есть указания на то, что австралийские сумчатые, в отличие от большинства млекопитающих, обладают хорошим трихроматическим зрением. Кэтрин Аррес и ее коллеги, открывшие его у поссумов-медоедов и австралийских сумчатых землероек (такое зрение было найдено и у кенгуру-валлаби), предположили, что австралийские (но не американские) сумчатые сохранили древний светочувствительный пигмент рептилий, утраченный остальными млекопитающими. Однако в целом у млекопитающих все-таки самое слабое среди позвоночных цветовое зрение. Большинство млекопитающих если и различает цвета, то примерно на уровне страдающих дальтонизмом людей. Любопытные исключения из этого правила можно найти среди приматов. Неслучайно они чаще других млекопитающих используют для брачной демонстрации яркие цвета.
Австралийские сумчатые, в отличие от нас, видимо, никогда не теряли цветовое зрение. Мы же, судя по своим родственникам среди млекопитающих, скорее всего, не унаследовали от рептилий трихроматическое зрение, а заново изобрели его. Причем два раза: первый раз это сделали обезьяны Старого Света и человекообразные обезьяны, а второй – ревуны (только они, а не все обезьяны Нового Света). Цветовое зрение ревунов похоже на цветовое зрение человекообразных обезьян, однако отличается от него достаточно, чтобы понять: возникло оно независимо.
Что же такого хорошего в цветовом зрении, что трихроматизм возник независимо у обезьян Старого и Нового Света? Основная гипотеза гласит, что цветовое зрение связано с питанием фруктами. На фоне однотонной зеленой листвы фрукты выделяются. Это, в свою очередь, не случайно. Фрукты скорее всего приобрели яркие цвета для привлечения поедающих плоды животных, например обезьян, которые играют важную роль в распространении семян. Кроме того, трихроматическое зрение помогает находить на фоне темной листвы более молодые и мясистые листья (которые бывают бледно-зелеными, иногда даже красными). Впрочем, последнее вряд ли идет на пользу растениям.
Цвет завораживает нас. Слова, обозначающие цвета – первые прилагательные, которые узнают дети, и именно эти слова они раньше всего пытаются связать с каким-нибудь подходящим существительным. Но мы редко вспоминаем, что цвета и оттенки, которые мы видим – это ярлыки, которые наше сознание навешивает на участки спектра, слегка различающиеся длиной электромагнитных волн. Красный свет соответствует длине волны около 700 нм, фиолетовый – около 420 нм. При этом видимое излучение в этих рамках составляет ничтожную часть спектра. Ведь длина волны может варьировать от нескольких километров (некоторые радиоволны) до долей нанометра (гамма-излучение).
Все глаза на планете устроены так, чтобы воспринимать волны тех длин, в которых наша звезда ярче всего и которые проходят сквозь земную атмосферу. Однако способность глаза к восприятию электромагнитных волн ограничена биохимическими системами, необходимыми для улавливания размытого диапазона излучения. Законы физики устанавливают для видимого диапазона длин волн более четкие границы. Ни одно животное не воспринимает всю инфракрасную область спектра. Ближе всего подошли к этому гремучие змеи. У них на голове есть ямки, которые хотя и не могут создавать сфокусированное изображение в инфракрасном диапазоне, дают змеям некоторую направленную чувствительность к теплу, исходящему от добычи. Также ни одно животное не может воспринимать весь диапазон ультрафиолетовой части спектра, хотя некоторые животные, например пчелы, видят в ультрафиолете немного лучше нас. Зато пчелы не видят “нашего” красного цвета: для них он инфракрасный. В целом для животных “свет” – это узкий спектр электромагнитных волн между короткими волнами ультрафиолетового излучения и длинными – инфракрасного. Различие между пчелами, людьми и змеями лишь в том, где проходят границы воспринимаемого спектра.
Более узки эти границы для каждого типа светочувствительных клеток сетчатки. Одни колбочки немного лучше воспринимают красный участок спектра, другие – синий. Цветовое зрение представляет собой сопоставление данных, полученных от различных колбочек, и качество такого зрения сильно зависит от того, сколько типов колбочек в сетчатке. В сетчатке животных с дихроматическим зрением – два типа колбочек, трихроматическим зрением – три, тетрахроматическим зрением – четыре. Каждая колбочка характеризуется кривой чувствительности, у которой есть пик и не очень симметричные “угасающие” концы. За пределами, очерченными этой кривой, клетка “слепа”.
Допустим, колбочка имеет пик в зеленой части спектра. Значит ли это, что такая клетка посылает сигналы в мозг лишь тогда, когда она “смотрит” на зеленый объект, например на траву или бильярдный стол? Безусловно, нет. Просто клетке необходимо больше красного света (в этом случае), чтобы выдавать импульсы той же интенсивности, как при заданном количестве зеленого света. Такая клетка будет одинаково реагировать как на яркий красный свет, так и на тусклый зеленый[19]. Нервная система может определить цвет объекта лишь путем сопоставления одновременно поступающих импульсов по меньшей мере от двух клеток, чувствительных к разным участкам спектра. Каждая клетка при этом “контролирует” другую. Если же клеток не две, а три, представление о цвете окажется еще полнее.
Цветное телевидение и компьютерные мониторы работают в трехцветной системе, потому что были разработаны для трихроматических глаз. В обычном мониторе каждый пиксель состоит из трех точек, расположенных настолько близко друг к другу, что глаз не может их различить. Каждая точка всегда светится одним цветом. Посмотрев на экран под достаточно большим увеличением, мы увидим одни и те же три цвета – обычно красный, зеленый и синий, хотя иногда могут использоваться и другие комбинации. Любой оттенок можно получить, регулируя интенсивность свечения трех основных цветов. Должно быть, черепах с их тетрахроматическим зрением наши телевизоры разочаровывают.
Сопоставляя интенсивность импульсов всего от трех типов колбочек, наш мозг может воспринимать огромный диапазон оттенков. Но большинство плацентарных млекопитающих обладает дихроматическим зрением: в их сетчатке колбочки двух типов. У колбочек одного типа пик восприимчивости в фиолетовой области спектра (в некоторых случаях – в ультрафиолетовой), у второго типа – где-то между зеленой и красной областями. У нас, животных с трихроматическим зрением, пик “коротковолновых” колбочек находится между фиолетовой и синей областями спектра. Такие колбочки называют синими… Другие два типа наших колбочек – так называемые зеленые и красные. Правда, даже у красных колбочек пик приходится скорее на желтоватую, чем на красную часть спектра. Но в целом кривая их чувствительности сдвинута в красную часть спектра. Так что, несмотря на то, что пик в желтой области, эти колбочки все равно генерируют сильный импульс в ответ на красный свет. Поэтому, если вычесть интенсивность импульса от зеленых колбочек из интенсивности импульса красных колбочек, мы получим особенно сильный сигнал в ответ на красный свет.
Кроме колбочек, в сетчатке еще есть палочки – светочувствительные клетки, которые отличаются от колбочек формой и особенно эффективны ночью. В цветовом зрении эти клетки не участвуют, и мы больше не будем о них говорить.
Химия и генетика цветового зрения довольно хорошо изучены. Главными молекулярными акторами здесь выступают опсины. Это молекулы белка, которые в колбочках и палочках выполняют функцию зрительных пигментов. Каждая молекула опсина связана с одной молекулой ретиналя – химического соединения, которое является производным витамина А [20]. Молекула ретиналя скручена в петлю, которая встраивается в молекулу опсина. При попадании фотона с подходящей длиной волны узел распрямляется. Это служит сигналом для клетки: она посылает нервный импульс, который говорит мозгу: “Вижу свет своего типа”. Тогда молекула опсина связывается с новой скрученной молекулой ретиналя, поступающей из внутриклеточных запасов.
Не все молекулы опсина одинаковы. Опсины, как и все белки, кодируются генами. Различия в ДНК приводят к образованию опсинов, чувствительных к разным цветам, и это служит генетической основой дихроматического и трихроматического зрения. А поскольку каждая клетка организма имеет полный набор генов, различия между красными и синими колбочками не в том, какие гены у них есть, а в том, какие гены работают. На этот счет есть правило: каждая колбочка включает лишь один тип генов.
Гены, кодирующие наши зеленый и красный опсины, очень похожи друг на друга и находятся на Х-хромосоме (половая хромосома, которая у женщин есть в двух копиях, у мужчин – в одной). Ген, отвечающий за образование синего опсина, немного от них отличается и находится не на половой хромосоме, а на одной из обычных хромосом, которые называют аутосомами (в нашем случае это седьмая хромосома). Наши зеленые и красные клетки явно образовались в результате недавней дупликации гена, который, в свою очередь, задолго до этого образовался в результате дупликации гена синего опсина. Тип зрения животного – дихроматический или трихроматический – зависит от того, сколько разных генов опсинов у него в геноме. Если в геноме животного есть, например, гены синего и зеленого опсинов, но отсутствует ген красного опсина, такое животное будет дихроматом.
Прежде чем заняться ревунами и историей приобретения ими трихроматического зрения, попытаемся понять, как устроено странное для нас дихроматическое зрение остальных обезьян Нового Света. Кстати, дихроматическое зрение есть у некоторых лемуров, но не у всех обезьян Нового Света (у ночных обезьян зрение монохроматическое). Так что пока забудем о ревунах и других необычных видах.
Во-первых, исключим из обсуждения “синий” ген, который находится на аутосомах всех особей независимо от пола. С “красными” и “зелеными” генами на Х-хромосоме все сложнее и гораздо интереснее. На каждой Х-хромосоме есть только один локус, в котором может находиться красный или зеленый аллель[21]. Поскольку у самки две Х-хромосомы, она может обладать и красным, и зеленым аллелями одновременно. Однако у самца с его единственной Х-хромосомой может быть лишь один аллель: красный либо зеленый. Таким образом, типичный самец обезьяны Нового Света должен обладать дихроматическим зрением, потому что у него колбочки лишь двух типов: синие плюс красные либо зеленые. По нашим меркам, все эти самцы – дальтоники. Однако это дальтоники двух типов: у одних самцов в популяции нет зеленого опсина, у других – красного. Синий есть у всех.
Самкам теоретически повезло больше. Поскольку у них две Х-хромосомы, они могут оказаться счастливыми обладателями красного аллеля на одной хромосоме и зеленого аллеля – на другой (плюс, конечно, синий аллель). Такая самка будет обладать трихроматическим зрением[22]. У менее удачливой самки может оказаться два красных или два зеленых аллеля, и тогда ее зрение будет дихроматическим. По нашим меркам такие самки тоже будут дальтониками и тоже, как и в случае с самцами, дальтониками двух типов.
Поэтому популяции обезьян Нового Света, например тамаринов или беличьих обезьян (саймири), представляют собой странную смесь. Все самцы и некоторые самки обладают дихроматическим зрением, то есть они дальтоники, причем двух типов. Некоторые самки – но не самцы – обладают полноценным трихроматическим зрением, которое предположительно похоже на наше. Эксперименты, в ходе которых тамарины искали еду в замаскированных коробках, показали, что особи с трихроматическим зрением делают это успешнее, чем особи с дихроматическим зрением. Возможно, что, выходя на поиски пищи, стаи обезьян Нового Света полагаются на счастливых обладательниц трихроматического зрения. С другой стороны, возможно, обладатели дихроматического зрения, поодиночке или в компании с “дальтоником” другого типа, могут обладать неожиданными преимуществами. Говорят, во время Второй мировой войны в экипажи бомбардировщиков включали одного дальтоника, потому что он мог различить некоторые виды маскировки лучше товарищей-трихроматов. Эксперименты подтверждают, что люди с дихроматическим зрением распознают некоторые типы камуфляжа, способные обмануть людей с полноценным зрением. Так что, возможно, группа обезьян, состоящая из обладателей трихроматического зрения и “дальтоников” двух типов, найдет больше фруктов, чем группа, состоящая лишь из животных с трихроматическим зрением. Звучит надуманно, но смысл в этом есть.
Гены красного и зеленого опсинов у обезьян Нового Света представляют собой пример полиморфизма. Это одновременное существование в популяции двух или более альтернативных версий гена. При этом ни одна из версий не должна быть слишком редкой, то есть представлять собой результат недавней мутации. Известный принцип эволюционной генетики гласит: полиморфизм, подобный этому, не возникает без причины. Если бы он возникал просто так, в конце концов обезьян с красным аллелем стало бы больше, чем обезьян с зеленым аллелем, – или наоборот. Какой именно аллель получил бы преимущество, мы не знаем, но вероятность того, что оба оказались бы одинаково полезны, очень мала. Так что в итоге худший из них обязательно был бы отсеян.
Существование в популяции стабильного полиморфизма говорит о том, что он нужен. Но зачем? На этот счет существует две гипотезы, и каждая в нашем случае вполне применима. Это частотно-зависимый отбор и гетерозиготное преимущество. Явление частотнозависимого отбора наблюдается тогда, когда преимущество получает более редкий тип – просто потому, что он более редкий. При этом по мере вымирания менее предпочтительного типа он становится все более редким – и тогда получает преимущество. Допустим, что обезьяны с красным аллелем особенно хорошо различают красные фрукты, а с зеленым аллелем – зеленые. Если в популяции преобладают обезьяны с красным аллелем, все красные фрукты скоро будут съедены, и тогда преимущество получит одинокая обезьяна с зеленым аллелем, которая умеет находить зеленые фрукты. И наоборот. Хотя эта история звучит не слишком правдоподобно, она служит примером условий, необходимых для сохранения в популяции обоих типов. Эти необходимые условия в целом напоминают историю с летчиками-дальтониками.
Теперь обратимся к явлению гетерозиготного преимущества. Классическим примером выступает серповидноклеточная анемия у человека. Ген серповидноклеточной анемии плох тем, что у индивидов, имеющих две его копии (то есть у гомозигот по этому гену), эритроциты деформируются и становятся похожими на серпы. Такие люди страдают от тяжелой формы анемии. Однако у этого гена есть и плюсы: люди, имеющие лишь одну его копию (то есть гетерозиготы по этому гены), обладают устойчивостью к малярии. В тех районах, где распространена малярия, польза от этого гена перевешивает его вред, и ген серповидноклеточной анемии сохраняется в популяции, несмотря на пагубное воздействие на тех, кому не посчастливилось иметь две его копии[23]. Профессор Джон Моллон и его коллеги многое сделали для понимания полиморфной системы цветового зрения у обезьян Нового Света. Они полагают, что гетерозиготного преимущества, которым обладают самки с трихроматическим зрением, достаточно для сохранения красных и зеленых аллелей в популяции. Но еще лучшим примером в этом смысле является ревун.
Ревуны ловко пользуются преимуществами обоих механизмов полиморфизма, объединив их на одной хромосоме благодаря удачной транслокации (это особый вид мутации). При транслокации происходит перенос участка хромосомы на другую хромосому – или в другое место на той же хромосоме. Похоже, именно это произошло у предка ревунов. В результате оба аллеля – и красный, и зеленый – оказались рядом на одной Х-хромосоме. Даже если этот предок был самцом, указанная транслокация послужила отправной точкой для эволюционного развития трихроматического зрения. Со временем мутантная Х-хромосома распространялась в популяции, и теперь она есть в геноме у всех ревунов.
Ревунам было легко проделать этот эволюционный фокус, потому что генофонд популяции обезьян Нового Света уже содержал все три аллеля гена опсина. Просто в геноме каждой обезьяны, за исключением некоторых удачливых самок, было только два аллеля. Между тем у человекообразных обезьян и обезьян Старого Света трихроматическое зрение возникло по-другому. Наши дихроматические предки не делились на два типа, то есть в их популяции не было полиморфизма. Есть основания полагать, что удвоение гена опсина на Х-хромосоме наших предков было настоящей дупликацией. Первый мутантный предок оказался обладателем двух тандемных (то есть расположенных рядом) копий одного и того же аллеля – например зеленого. Поэтому он, в отличие от мутантного предка ревунов, не стал внезапным обладателем трихроматического зрения. У него было обычное дихроматическое зрение, обусловленное одним синим и двумя зелеными аллелями. Трихроматическое зрение у обезьян Старого Света формировалось постепенно, в ходе последующей эволюции. Поколение за поколением естественный отбор благоприятствовал расхождению цветовой чувствительности двух опсиновых аллелей на Х-хромосоме, что привело к образованию зеленого и красного аллелей.
При транслокации переносу подвергается не один ген, а сразу несколько. И иногда его спутники – соседи по хромосоме, перемещающиеся вместе с ним на новую хромосому, – могут рассказать кое-что интересное. Это именно такой случай. Ген Alu известен как “мобильный генетический элемент”: это короткий вирусоподобный участок ДНК, который размножается в геноме как своего рода паразит, использующий клеточный механизм репликации ДНК. Участвовал ли Alu в перемещении опсина? Похоже, что так. Изучив геном, мы можем найти неопровержимые доказательства. На обоих концах дуплицированного участка находятся гены Alu. Возможно, дупликация была случайным побочным эффектом репродукции “паразитического” элемента. В геноме некоей эоценовой обезьяны рядом с геном опсина имелся паразитический элемент. Во время самовоспроизведения он случайно реплицировал гораздо больший, чем нужно, участок ДНК и так создал предпосылку к появлению у нас цветового зрения. Тут возникает искушение сделать вывод, что если геномный паразит случайно оказал нам услугу, значит, геномы предоставляют убежище паразитам в надежде на гипотетическую пользу. Но это не так. Естественный отбор так не работает.
Ошибки копирования, подобные описанной, могут иногда происходить без участия Alu. Например, когда две Х-хромосомы объединяются перед кроссинговером, они с некоторой вероятностью могут сделать это неправильно. И тогда вместо правильного выравнивания (красный аллель на одной хромосоме встает напротив такого же красного аллеля на другой хромосоме) красный аллель оказывается, например, напротив зеленого. Происходит это из-за сходства аллелей. Если за такой ошибкой следует кроссинговер, он получается “неравным”: на одной хромосоме может оказаться лишний зеленый ген, а на другой – ни одного. Но даже если кроссинговер не происходит, может наблюдаться “конверсия генов”. При конверсии генов короткая последовательность на одной хромосоме превращается в соответствующую последовательность на другой. При ошибочном выравнивании хромосом участок красного аллеля может заменить соответствующий участок зеленого аллеля – и наоборот. Таким образом, к “красно-зеленому” дальтонизму может привести как неравный кроссинговер, так и конверсия генов при ошибочном выравнивании хромосом.
Красно-зеленым дальтонизмом (то есть неспособностью различать красный и зеленый цвета) чаще страдают мужчины, чем женщины. Ну, не то чтобы они страдали, однако это причиняет определенное неудобство: дальтоникам предположительно недоступны некоторые эстетические удовольствия. У мужчин, в отличие от женщин, нет запасной Х-хромосомы, которая могла бы заменить дефектную. Никто не знает, видят ли дальтоники кровь и траву такими же, как мы. Возможно, это зависит от человека. Мы знаем лишь, что людям с красно-зеленым дальтонизмом предметы цвета травы кажутся примерно такими же, как предметы цвета крови. В человеческой популяции дихроматический дальтонизм наблюдается примерно у 2 % мужчин. Кстати, не путайте дихроматический дальтонизм с другими видами красно-зеленого дальтонизма, которые встречаются гораздо чаще (примерно у 8 % мужчин). Таких людей называют аномальными трихроматами: хотя генетически они являются трихроматами, опсины одного из трех типов у них не работают[24]