Читать онлайн Озадачник: 133 вопроса на знание логики, математики и физики бесплатно

Озадачник: 133 вопроса на знание логики, математики и физики

Редактор О. Кропоткина

Руководитель проекта Л. Разживайкина

Корректор М. Смирнова

Компьютерная верстка А. Абрамов

Дизайн обложки Ю. Буга

Иллюстрации М. Сигунов

© Полуэктов Н., 2016

© ООО «Альпина Паблишер», 2017

Все права защищены. Произведение предназначено исключительно для частного использования. Никакая часть электронного экземпляра данной книги не может быть воспроизведена в какой бы то ни было форме и какими бы то ни было средствами, включая размещение в сети Интернет и в корпоративных сетях, для публичного или коллективного использования без письменного разрешения владельца авторских прав. За нарушение авторских прав законодательством предусмотрена выплата компенсации правообладателя в размере до 5 млн. рублей (ст. 49 ЗОАП), а также уголовная ответственность в виде лишения свободы на срок до 6 лет (ст. 146 УК РФ).

* * *

Рис.0 Озадачник: 133 вопроса на знание логики, математики и физики

Editor's choice – выбор главного редактора

Прекрасная книга для того, чтобы вспомнить свои знания по логике, физике и математике и восхититься красотой и простотой («Как же я мог забыть?») ответов. Подходит как для коллективных интеллектуальных посиделок с друзьями, так и для самопроверки. Удачи вам в «правильной» загрузке вашего мозга!

Рис.1 Озадачник: 133 вопроса на знание логики, математики и физики
Сергей Турко, главный редактор издательства «Альпина Паблишер»

Предисловие

Вечное сияние чистого разума

Разумеется, мне неизвестно, как возник мир, был ли у него создатель, или все получилось само собой. Но я глубоко убежден, что весь этот мир мог быть (и верю, что был) придуман, выведен из нескольких простых и ясных рассуждений. Судите сами. Все законы сохранения в классической механике вытекают из предположения об однородности пространства и времени. Если мы считаем пространство однородным (точка А в физическом отношении ничем не отличается от точки Б), получаем закон сохранения импульса. Считаем однородным время (12:00 ничем не лучше 21:00) – выводим закон сохранения энергии. Ну а если примем пространство изотропным (все направления равноправны – вперед, назад, вверх, вниз, вправо, влево), то тут же сформулируем закон сохранения момента импульса (вот из-за чего вращается волчок!).

Специальную теорию относительности Эйнштейн вывел из предположения, что скорость распространения сигнала ограничена конечным пределом (это скорость света в вакууме – 300 000 км в секунду). А общую теорию относительности – из принципа эквивалентности гравитационной и инерционной масс. Там в начале всего лежит завораживающее рассуждение: представьте, что вы едете в лифте. Вы давите на пол всем своим весом, но, если двери лифта непрозрачны, вы никогда не сможете определить, что создает этот вес – может, притяжение Земли, а может, ваш лифт какие-то шутники подцепили к ракете и она разгоняется с ускорением g[1]? И вот из такого анекдота родилась вся современная космология! Фантастика!

А величайшая наука XX века, квантовая механика (атомная бомба, лазеры, компьютеры, сверхпроводники и проч. – все появилось благодаря ей), выведена, если подумать, из почти очевидного предположения, что процесс измерения может влиять на измеряемый объект. Только вы об этом подумали – так сразу создали новый сложный мир с протонами и электронами, атомами, рассортированными по нужным ячейкам в таблице Менделеева, парадоксами наподобие знаменитого кота Шредингера и т. д. и т. п.

Так что три раздела нашей книги – «Логика», «Математика», «Физика» – не связаны друг с другом только на первый взгляд. Если разобраться, то их никак не разделить: логические рассуждения порождают физические законы, а математика позволяет все это обсчитать и получить конечный результат, что называется, в цифре.

* * *

«Озадачник» – книга, появившаяся из настольной игры, которую мы придумали с моим отцом, Павлом Петровичем Полуэктовым – доктором физ. – мат. наук, профессором, физиком-ядерщиком. Работа над первым «Озадачником» (по физике) была лучшей работой на свете – никакое занятие ни до, ни после не доставляло мне такого удовольствия! Папа придумывал задачи (он написал их все в три дня), я редактировал и подгонял под наш формат (условие, три варианта ответа, правильный ответ с качественным решением). Над «Логикой» и «Математикой» мне пришлось работать одному – папы не стало в марте 2015-го. Он уходил тяжело, как это всегда бывает с такой болезнью (онкология). В один из последних дней он пошутил: «Меня тут обследовали, и я обнаружил, что единственным местом, не задетым болезнью, осталась голова. Пожалуй, это лучшее, чего бы я мог себе пожелать в сложившихся обстоятельствах!» «Мне с собой никогда не бывает скучно», – его любимая присказка. И он продолжал работать до самого последнего дня – звучит избито, но не знаю, как еще сформулировать.

Уже после смерти отца продолжили выходить его работы, папины коллеги выпускали статьи, материалом для которых он делился в их последние встречи. И вот еще один его труд – книга, которую вы держите в руках. Папа, кстати, сразу хотел выпустить «Озадачник» еще и в книжном формате. «Понимаешь, сейчас совсем не осталось хороших задачников!» – говорил он. В своих воспоминаниях я, любя, сравниваю его с Чеширским котом. Да, он ушел, но осталась его улыбка. А то, что он придумал столько времени назад, продолжает воплощаться и сейчас. Мысль – она сильнее многих обстоятельств.

Николай ПолуэктовМосква, 6 мая 2016 г.

Логика

1. Странная рыба

В супермаркетах отдел консервированной рыбы завален сардинами, а вот в отделе свежей рыбы их никогда не бывает. Чем это можно объяснить?

Варианты ответов

1. Сардины – недорогая рыба, рыбакам выгоднее закатать ее в банку прямо в море, чем возиться с поставками свежевыловленного продукта в магазины.

2. Свежие сардины обладают неприятными запахом и привкусом, которые уходят только после консервации.

3. Сардины? Их просто не существует!

Правильный ответ: 3

Многих этот факт удивляет, но можно поручиться за его 100-процентную достоверность: такого сорта рыбы, как сардины, не существует в природе. Сардинами именуют мелкую консервированную рыбешку самой разной породы. Это как шпроты (прямая аналогия) и таинственная рыба сурими, которая якобы входит в состав всех крабовых палочек: сурими в переводе с японского значит «фарш», в крабовые палочки накладывают фарш из рыбы подешевле – минтая и т. п.

Рис.2 Озадачник: 133 вопроса на знание логики, математики и физики

2. Сколько мне лет?

Молодой аспирант приступил к чтению курса логики в университете. Одна из студенток поинтересовалась, сколько ему лет, и он ответил ей так:

– Я родился в понедельник, что некоторые считают плохой приметой. Кстати, в этом году мой день рождения также придется на понедельник. Но я в приметы не верю, к тому же все не так уж и плохо – ведь за прошедшие годы день рождения у меня выпадал на каждый день недели одинаковое количество раз. Так сколько же мне лет? – спрошу я у вас.

А действительно, сколько?

Варианты ответов

1. 22.

2. 27.

3. 32.

Правильный ответ: 2

В обычном, не високосном году 365 = 52 × 7 + 1 дней. Получается, что день недели каждый год сдвигается на единицу: если в этом году 1 января приходится на понедельник, то в следующем году на вторник, потом на среду и т. д. Если бы не високосные годы, то с периодом в семь лет вся история строго повторялась бы: опять Новый год в понедельник, вторник и т. д. Но каждые четыре года происходит сбой: в году на один день больше, и мы «перескакиваем» через один день недели (если 1 января в високосном понедельник, то в следующем это среда). Тем не менее понятно, что выпадение дней недели на определенную дату – процесс периодический, и логично предположить, что период у этого процесса – наименьшее общее кратное периодов в семь (смена дней недели) и четыре (промежуток между високосными годами) года, т. е. 28. Это действительно так и проверяется элементарно (просто изучите календарь). Итак, в текущем году аспиранту должно исполниться 28 лет (есть еще возможности 56, 84 и т. д., но их отбрасываем – в условии сказано, что он молод), только в этом случае будет удовлетворено условие «день рождения у меня выпадал на каждый день недели одинаковое количество раз». День рождения еще не прошел (аспирант говорит о нем в будущем времени) – значит, сейчас ему 27.

Рис.3 Озадачник: 133 вопроса на знание логики, математики и физики

3. Орел или решка?

Монета выпадает орлом или решкой с одинаковой вероятностью 1/2 (50 %). В эксперименте подбросили монету 10 раз и – чудеса! – все 10 раз выпал орел. Какова вероятность, что и на одиннадцатом броске снова выпадет орел?

Варианты ответов

1. 1/2 (50 %).

2. 1/2 в 11-й степени (0,0005, или 0,05 %), практически невероятное событие.

3. Определяется временем между бросками: если подождать достаточно долго, то события будут независимыми, и вероятность составит 50 %; если бросить сразу, то вероятность 11 раз подряд получить орла – 0,05 %.

Правильный ответ: 1

Интуиция подсказывает, что не может 11 раз выпадать орел и, значит, вероятность его появления после того, как он выпал 10 раз подряд, должна быть ниже, чем при первом броске. Увы, интуиция нас подводит – она не ниже, а такая же, всегда 50 %. Предыстория процесса на нее никак не влияет. Это, кстати, никак не доказывается, а принимается на веру – есть такая эргодическая гипотеза, которую можно сформулировать и так: подбрасывание одной монеты n раз подряд и одновременное подбрасывание n монет со статистической точки зрения совершенно эквивалентны. Когда мы подбрасываем n монет, они уж точно друг о друге ничего не «знают» и выпадают орлом или решкой с вероятностью 50 % (для каждой). Эргодическая гипотеза не доказывается, но при этом безупречно работает в статистике, термодинамике, квантовой физике и т. д. Так что вероятность выпадения орла на 11-м броске остается той же самой – другое дело, что оказаться в реальности, когда перед этим 10 раз подряд выпал орел (или 10 раз подряд выпало «красное» на рулетке, или 10 раз подряд выиграть в техасский покер с двумя двойками и т. п.), крайне маловероятно – 0,1 %. В среднем такой результат будет получаться в одном эксперименте из тысячи.

Рис.4 Озадачник: 133 вопроса на знание логики, математики и физики

4. Который час?

В ночь с 25 на 26 октября должен состояться переход на зимнее время, все часы переводятся на час назад. У Игоря в доме только двое часов, и те и другие электронные: в планшете и в телефоне. Перед тем как лечь спать, он выставляет на них новое время, с тем чтобы проснуться в 10:00 и поспешить на свидание к Арине (они условились встретиться в 12:00). Когда же он проснулся, то с удивлением узнал, что часы на планшете показывают 10:00, а на телефоне – 11:00. Удалось ли Игорю определить, который час, и не опоздать на свидание?

Варианты ответов

1. Было 10:00, и Игорь смог это установить – все как он и планировал, на свидание пришел вовремя.

2. Было 11:00, и Игорь смог это установить – быстро собравшись, он успел вовремя добраться к Арине.

3. Установить точное время не представлялось возможным, он опоздал, свидание было безнадежно испорчено.

Правильный ответ: 2

Для начала нужно понять, почему вообще время на часах могло измениться. Всякий владелец гаджетов знает – тому может быть две причины: или точное время пришло из сети (мобильной или компьютерной), или прибор сам перевел время в соответствии со своими настройками («Автоматически переключаться на летнее/зимнее время»). Почти наверняка на одном из устройств Игоря случилось именно второе: после того как (вечером) Игорь выставил часы, гаджет (ночью) сам еще раз их переставил. Осталось понять, в какую сторону он мог изменить время, – совершенно очевидно, что прибор открутил его на час назад. Судите сами, устройство не знает, сколько на самом деле времени, но программно в нем заложен переход на зимнее время – т. е. оно обязано совершить «перевод стрелок» в запрограммированном направлении, соответственно на час назад. Так что Игорь должен был поверить часам, показывающим более позднее время, что он и сделал. Надо сказать, ему еще повезло: если бы ночью часы перевелись и на планшете, и на телефоне, с утра они показывали бы одинаковое и неправильное время (10:00), и Игорь бы гарантированно опоздал на свидание ровно на час.

Рис.5 Озадачник: 133 вопроса на знание логики, математики и физики

5. Казнить нельзя помиловать

Суд в одной из ближневосточных стран приговаривает преступника к смертной казни. По законам этой страны приговоренный имеет право на последнее слово, которое может содержать не более одного утверждения. Если оно будет истинным, преступника утопят, если же ложным – тогда повесят. Осужденный произносит одну фразу, после чего казнь немедленно отменяют. Что же такого он сказал?

Варианты ответов

1. «Меня повесят».

2. «Меня не повесят, но утопят».

3. «Меня не повесят и не утопят».

Правильный ответ: 1

Произнеся «Меня повесят», преступник поставил суд в безвыходное положение. Если утверждение истинно и его и правда повесят, то нарушат закон, так как в этом случае осужденного должны были не вешать, а топить. Если же оно ложно, то его не могут ни утопить (топят только тогда, когда утверждение истинно), ни повесить (потому что тогда оно перестанет быть ложным). Чтобы не нарушить закон, судья вынужден отменить казнь. Рассуждая аналогично, нетрудно показать, что фразы «Меня повесят, но не утопят» и «Меня не утопят» приведут к такому же результату.

Рис.6 Озадачник: 133 вопроса на знание логики, математики и физики

6. Выбор католика

Если вам известно хоть что-то о католической вере, вы легко сможете ответить на этот вопрос. Может ли искренне верующий католик, следующий всем заветам своей церкви, жениться на сестре своей вдовы?

Варианты ответов

1. Да.

2. Да, но только испросив разрешение священника.

3. Нет.

Правильный ответ: 3

Ну конечно же нет! Если у него есть вдова, то сам-то он кто? Покойник, как есть мертвец. Ни на женитьбу, ни на вообще какое-либо действие он уже, увы, не способен.

Рис.7 Озадачник: 133 вопроса на знание логики, математики и физики

7. Чей же портрет?

Джентльмен в галерее долго и внимательно рассматривает портрет другого джентльмена, удивительно похожего на него самого. У него интересуются:

– Скажите, чей это портрет?

– Видите ли, в семье я рос совершенно один. И к этому необходимо добавить, что отец того, кто на портрете, – сын моего отца.

Чей же портрет разглядывает джентльмен?

Варианты ответов

1. Своего отца.

2. Свой собственный.

3. Своего сына.

Правильный ответ: 3

Загадка становится тривиальной, если упростить запутанное условие. «Отец того, кто на портрете, – сын моего отца» – это или сам говорящий, или его брат. По условию братьев у него не было, значит, это он и есть, других вариантов не просматривается. Упрощаем: «Отец того, кто на портрете, – это я», значит, на портрете – его сын.

Рис.8 Озадачник: 133 вопроса на знание логики, математики и физики

8. Сколько поставить?

Джон был в отчаянии: сегодня же День всех влюбленных! Он планировал подарить своей невесте Мэри изящное колечко, которое они вместе видели в Tiffany & Co. Но – надо же такому случиться! – кольцо стоит $40, а в кошельке у него только $20. Где взять недостающую двадцатку? Джон оглянулся и увидел вывеску казино. «Поставлю все на "красное", и будь что будет!» – решил Джон, но, уже подходя к столу, задумался: а нужно ли ставить сразу все? Это же какой великий риск! Не разумнее ли будет поставить 20 раз по $1?

Так как лучше поступить Джону?

Варианты ответов

1. Поставить $20 одной суммой и сыграть один раз.

2. Воспользоваться малорискованной стратегией: разбить сумму по $1 и поставить 20 раз.

3. Вероятность выигрыша не зависит от количества ставок.

Правильный ответ: 1

Вероятность выигрыша на американской рулетке при ставке на цвет (на черное или красное) составляет 18/38 (18 красных или черных чисел из 38 ячеек), т. е. почти 50 % (47,37 %, если быть точным), при этом выигрыш составляет двойной размер ставки (поставил x и, если выиграл, забрал 2x). Таким образом, поставив $20, Джон с шансами почти «один к одному» уходит с $40. Это очень хорошие шансы, примерно как при подбрасывании монеты угадать, что выпадет – орел или решка. А чтобы выиграть $20, ставя по $1, ему нужно выиграть 20 раз подряд (шансы меньше, чем один из миллиона; ср. с задачей № 3) либо сыграть 22 раза, проиграв только один раз, либо 24 раза, проиграв только дважды, и т. п. Учтя все эти возможности, найдем, что вероятность выиграть нужную сумму при осторожном подходе – 11 %, вчетверо меньше, чем при однократной ставке в $20! В общем, ставить по $1 никакая не малорискованная стратегия, а ровно наоборот. Отсюда, кстати, еще одно следствие: если вам случилось крупно выиграть, лучше сразу перестать играть – только так вы сможете сохранить свой выигрыш. Правда, даже те, кто знают об этом, редко находят силы встать и уйти, поэтому-то казино всегда в плюсе.

Рис.9 Озадачник: 133 вопроса на знание логики, математики и физики

9. Консервированные слаще

Маленький Алеша не любил абрикосы. «Несладкие!» – кричал он маме и отказывался есть самые спелые фрукты. Но однажды в гостях ему предложили консервированные абрикосы, и он их с удовольствием съел. «Это потому, что в них добавили сахар», – вздохнула мама, но, прочитав состав продукта («Абрикосы, вода»), была изрядно озадачена. Никакого сахара.

Почему же консервированные абрикосы всегда слаще, чем свежие?

Варианты ответов

1. Производители лукавят: сахар добавляют, но в составе не указывают.

1 g = 9,8 м/с² – ускорение свободного падения в поле притяжения Земли вблизи ее поверхности.
Teleserial Book